1000 resultados para BAGD2MN2O7 PHASE
Resumo:
Handling unbalanced and non-linear loads in a three-phase AC power supply has always been a difficult issue. This has been addressed in the literature by either using fast controllers in the fundamental rotating reference frame or using separate controllers in reference frames specific to the harmonics. In the former case, the controller needs to be fast and in the lattercase, besides the need for many controllers, negative-sequence components need to be extracted from the measured signal.This study proposes a control scheme for harmonic and unbalance compensation of a three-phase uninterruptible power supply wherein the problems mentioned above are addressed. The control takes place in the fundamental positive-sequence reference frame using only a set of feedback and feed-forward compensators. The harmonic components are extracted by process of frame transformations and used as feed-forward compensation terms in the positive-sequence fundamental reference frame. This study uses a method wherein the measured signal itself is used for fundamental negative-sequence compensation. As the feed-forward compensator handles the high-bandwidth components, the feedback compensator can be a simple low-bandwidth one. This control algorithm is explained and validated experimentally.
Resumo:
We investigate a system of fermions on a two-dimensional optical square lattice in the strongly repulsive coupling regime. In this case, the interactions can be controlled by laser intensity as well as by Feshbach resonance. We compare the energetics of states with resonating valence bond d-wave superfluidity, antiferromagnetic long-range order, and a homogeneous state with coexistence of superfluidity and antiferromagnetism. Using a variational formalism, we show that the energy density of a hole e(hole)(x) has a minimum at doping x = x(c) that signals phase separation between the antiferromagnetic and d-wave paired superfluid phases. The energy of the phase-separated ground state is, however, found to be very close to that of a homogeneous state with coexisting antiferromagnetic and superfluid orders. We explore the dependence of the energy on the interaction strength and on the three-site hopping terms and compare with the nearest-neighbor hopping t-J model.
Resumo:
The Griffiths phase-like features and the spin-phonon coupling effects observed in Tb(2)NiMnO(6) are reported. The double perovskite compound crystallizes in monoclinic P2(1)/n space group and exhibits a magnetic phase transition at T(c) similar to 111 K as an abrupt change in magnetization. A negative deviation from ideal Curie-Weiss law exhibited by 1/chi(T) curves and less-than-unity susceptibility exponents from the power-law analysis of inverse susceptibility are reminiscent of Griffiths phase-like features. Arrott plots derived from magnetization isotherms support the inhomogeneous nature of magnetism in this material. The observed effects originate from antiferromagnetic interactions that arise from inherent disorder in the system. Raman scattering experiments display no magnetic-order-induced phonon renormalization below Tc in Tb(2)NiMnO(6), which is different from the results observed in other double perovskites and is correlated to the smaller size of the rare earth. The temperature evolution of full-width-at-half-maximum for the stretching mode at 645 cm(-1) presents an anomaly that coincides with the magnetic transition temperature and signals a close connection between magnetism and lattice in this material. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3671674]
Resumo:
Monodisperse polyhedral In(2)O(3) nanoparticles were synthesized by differential mobility classification of a polydisperse aerosol formed by evaporation of indium at atmospheric pressure. When free molten indium particles oxidize, oxygen is absorbed preferentially on certain planes leading to the formation of polyhedral In(2)O(3) nanoparticles. It is shown that the position of oxygen addition, its concentration, the annealing temperature and the type of carrier gas are crucial for the resulting particle shape and crystalline quality. Semiconducting nanopolyhedrals, especially nanocubes used for sensors, are expected to offer enhanced sensitivity and improved response time due to the higher surface area as compared to spherical particles.
Resumo:
Fabrication of 0.65Pb(Mg1/3Nb2./3)O-3-0.35PbTiO(3) (PMN-PT) nanoparticles with an average size of about 40 nm and their phase transformation behavior from pyrochlore to perovskite phase is investigated. A novel sol-gel method was used for the synthesis of air-stable and precipitate-free diol-based sol of PMN-PT which was dried and partially calcined at 450 degrees C for 1 h to decompose organics and bring down the free energy barrier for perovskite crystallization and then finally annealed in the temperature range 600 to 700 degrees C. Annealed at around 700 degrees C for 1 h, PMN-PT gel powder exhibited nanocrystalline morphology with perovskite phase as confirmed by the transmission electron microscopy and X-ray diffraction techniques. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677974]
Resumo:
The critical behaviour has been investigated in single crystalline Nd0.6Pb0.4MnO3 near the paramagnetic to ferromagnetic transition temperature (TC) by static magnetic measurements. The values of TC and the critical exponents β, γ and δ are estimated by analysing the data in the critical region. The exponent values are very close to those expected for 3D Heisenberg ferromagnets with short-range interactions. Specific heat measurements show a broad cusp at TC (i.e., exponent α<0) being consistent with Heisenberg-like behaviour.
Resumo:
Gadolinium iron garnet was milled in a high energy ball mill to study its magnetic properties in the nanocrystalline regime. XRD reveals the decomposition of the garnet phase into Gd-orthoferrite and Gd2O3 on milling. The variation of saturation magnetization and coercivity with milling is attributed to a possible shift in the compensation temperature on grain size reduction and an increase in the orthoferrite content. The Mössbauer spectrum at 16 K is characteristic of the magnetically ordered state corresponding to GdIG, GdFeO3 and α-Fe2O3 whereas at room temperature it is a superparamagnetic doublet.
Resumo:
We report the formation omega phase in the remelted layers during laser cladding and remelting of quasicrystal forming Al65Cu23.3Fe11.7 alloy on pure aluminum. The omega phase is absent in the clad layers. In the remelted layer, the phase nucleates at the periphery of the primary icosahedral phase particles. A large number of omega phase particles forms enveloping the icosahedral phase growing into aluminum rich melt, which solidify as alpha-Al solid solution. On the other side it develops an interface with aluminum. A detailed transmission electron microscopic analysis shows that omega phase exhibits orientation relationship with icosahedral phase. The composition analysis performed using energy dispersive x-ray analyzer suggests that this phase has composition higher aluminum than the icosahedral phase. The analysis of the available phase diagram information indicates that the present results represent large departure from equilibrium conditions. A possible scenario of the evolution of the omega phase has been suggested.
Resumo:
This study presents a novel magnetic arm-switch-based integrated magnetic circuit for a three-phase series-shunt compensated uninterruptible power supply (UPS). The magnetic circuit acts as a common interacting field for a number of energy ports, viz., series inverter, shunt inverter, grid and load. The magnetic arm-switching technique ensures equivalent series or shunt connection between the inverters. In normal grid mode (stabiliser mode), the series inverter is used for series voltage correction and the shunt one for current correction. The inverters and the load are effectively connected in parallel when the grid power is not available. These inverters are then used to share the load power. The operation of the inverters in parallel is ensured by the magnetic arm-switching technique. This study also includes modelling of the magnetic circuit. A graphical technique called bond graph is used to model the system. In this model, the magnetic circuit is represented in terms of gyrator-capacitors. Therefore the model is also termed as gyrator-capacitor model. The model is used to extract the dynamic equations that are used to simulate the system using MATLAB/SIMULINK. This study also discusses a synchronously rotating reference frame-based control technique that is used for the control of the series and shunt inverters in different operating modes. Finally, the gyrator-capacitor model is validated by comparing the simulated and experimental results.
Resumo:
A study is made to bring out the effect of alloying with Cr, Ti or Mn on the creep behaviour of Fe3Al. Impression creep experiments have been carried out in the DO3 phase field. In all the alloys, power law creep behaviour is observed in the stress range covered. The stress exponent for steady state creep rate and the activation energy for creep indicate that the creep rate is controlled by the dislocation climb process. Among the alloying elements studied, addition of Ti is most effective in improving the creep resistance.
Resumo:
We report high pressure Raman studies on single crystals of metallic LaB6 upto a pressure of 16.$ GPa. Raman spectra shows three lines at 680 cm(-1) (T-2g), 1120 cm(-1) (E-g) and 1258 cm(-1) (A(1g)), associated with the internal modes of B-6 molecule. The T-2g mode shows an asymmetric Fano line shape, arising from the interference between the phonon line and the electronic continuum. The line is fitted with I(omega) = I-0(q + epsilon(2))/(I + epsilon(2)) where epsilon = (omega - omega(0))/Gamma, omega(0) is the phonon frequency renormalised due to electron-phonon self energy corrections, Tis the width parameter proportional to the square of the matrix element of the electron-phonon interaction potential. The parameter a signifies the strength of interference. Most interestingly our pressure data for the T-2g mode shows a significant change in the slope of the mode frequency with pressure d omega(0)/dP and Gamma at 9.5 GPa. This clearly indicates that LaB6 undergoes a subtle phase transition at 9.5 GPa within the metallic phase.
Resumo:
Sol-gel processing followed by H2 reduction is used to produce dispersions of nanosized Pb in amorphous SiO2 and ultrafine γ Al2O3 matrices. A depression of 3–5K in Pb melting point is reported. The size and shape of these metastable particles in molten and solid state are discussed in the light of the experimental observations and expectations from the intersection group theory for equilibrium shape.