995 resultados para Atomic Displacement Parameters
Resumo:
Bioanalytical data from a bioequivalence study were used to develop limited-sampling strategy (LSS) models for estimating the area under the plasma concentration versus time curve (AUC) and the peak plasma concentration (Cmax) of 4-methylaminoantipyrine (MAA), an active metabolite of dipyrone. Twelve healthy adult male volunteers received single 600 mg oral doses of dipyrone in two formulations at a 7-day interval in a randomized, crossover protocol. Plasma concentrations of MAA (N = 336), measured by HPLC, were used to develop LSS models. Linear regression analysis and a "jack-knife" validation procedure revealed that the AUC0-¥ and the Cmax of MAA can be accurately predicted (R²>0.95, bias <1.5%, precision between 3.1 and 8.3%) by LSS models based on two sampling times. Validation tests indicate that the most informative 2-point LSS models developed for one formulation provide good estimates (R²>0.85) of the AUC0-¥ or Cmax for the other formulation. LSS models based on three sampling points (1.5, 4 and 24 h), but using different coefficients for AUC0-¥ and Cmax, predicted the individual values of both parameters for the enrolled volunteers (R²>0.88, bias = -0.65 and -0.37%, precision = 4.3 and 7.4%) as well as for plasma concentration data sets generated by simulation (R²>0.88, bias = -1.9 and 8.5%, precision = 5.2 and 8.7%). Bioequivalence assessment of the dipyrone formulations based on the 90% confidence interval of log-transformed AUC0-¥ and Cmax provided similar results when either the best-estimated or the LSS-derived metrics were used.
Resumo:
A double-blind, randomized, placebo-controlled study was carried out on 44 hypertensive type 2 diabetic subjects previously treated by diet associated or not with sulfonylurea to assess the effects of acarbose-induced glycemic control on blood pressure (BP) and hormonal parameters. Before randomization and after a 22-week treatment period (100 to 300 mg/day), the subjects were submitted to a standard meal test and to 24-h ambulatory BP monitoring (ABPM) and had plasma glucose, glycosylated hemoglobin, lipid profile, insulin, proinsulin and leptin levels determined. Weight loss was found only in the acarbose-treated group (75.1 ± 11.6 to 73.1 ± 11.6 kg, P<0.01). Glycosylated hemoglobin decreased only in the acarbose group (6.4 ± 1.7 to 5.6 ± 1.9%, P<0.05). Fasting proinsulin decreased only in the acarbose group (23.4 ± 19.3 to 14.3 ± 13.6 pmol/l, P<0.05), while leptin decreased in both (placebo group: 26.3 ± 6.1 to 23.3 ± 9.4 and acarbose group: 25.0 ± 5.5 to 22.7 ± 7.9 ng/ml, P<0.05). When the subset of acarbose-treated patients who improved glycemic control was considered, significant reductions in diurnal systolic, diastolic and mean BP (102.3 ± 6.0 to 99.0 ± 6.6 mmHg, P<0.05) were found. Acarbose monotherapy or combined with sulfonylurea was effective in improving glycemic control in hypertensive diabetic patients. Acarbose-induced improvement in metabolic control may reduce BP in these patients. Our data did not suggest a direct action of acarbose on insulin resistance or leptin levels.
Resumo:
The objective of the present study was to investigate the influence of the establishment of dominance relationships and social stress on plasma cortisol and metabolite levels in Nile tilapia (Oreochromis niloticus). During the 30-day experiment, the fish weighing 236 ± 29 g were kept in individual aquaria, except for two pairings lasting 6 h each. Blood samples were taken from the animals before and after pairing. Display, approach, attack, rebuff, chase flight, and coloration were carried out on days 16 and 30. Activities and behaviors characteristic of the establishment of dominance relationships were described. It was possible to classify all experimental fish (N = 30) as dominant or subordinate. No differences were detected between dominant (N = 15) and subordinate (N = 15) fish during isolation or after pairing in cortisol (isolated: 5.76 ± 0.98 vs 5.42 ± 0.63; paired: 10.94 ± 1.62 vs 11.21 ± 2.45 µg/dl), glucose (isolated: 60.02 ± 4.9 vs 67.85 ± 16.16; paired: 110.44 ± 15.72 vs 136.26 ± 22.46 mg/dl), triglyceride (isolated: 167.87 ± 5.06 vs 185.68 ± 7.24; paired: 210.85 ± 13.40 vs 221.82 ± 12.70 mg/dl) or total protein levels (isolated: 7.01 ± 0.42 vs 6.69 ± 0.59; paired: 9.21 ± 0.62 vs 9.51 ± 0.66 g/dl). However, when isolated (N = 30) and paired (N = 30) tilapia were compared, there were significant differences in cortisol and metabolite levels. The similar response presented by dominant and subordinate tilapia indicates that establishment of dominance relationships was a stressor for both groups.
Resumo:
Alternative methods to assess ventricular diastolic function in the fetus are proposed. Fetal myocardial hypertrophy in maternal diabetes was used as a model of decreased left ventricular compliance (LVC), and fetal respiratory movements as a model of increased LVC. Comparison of three groups of fetuses showed that, in 10 fetuses of diabetic mothers (FDM) with septal hypertrophy (SH), the mean excursion index of the septum primum (EISP) (ratio between the linear excursion of the flap valve and the left atrial diameter) was 0.36 ± 0.09, in 8 FDM without SH it was 0.51 ± 0.09 (P = 0.001), and in the 8 normal control fetuses (NCF) it was 0.49 ± 0.12 (P = 0.003). In another study, 28 fetuses in apnea had a mean EISP of 0.39 ± 0.05 which increased to 0.57 ± 0.07 during respiration (P < 0.001). These two studies showed that the mobility of the septum primum was reduced when LVC was decreased and was increased when LVC was enhanced. Mean pulmonary vein pulsatility was higher in 14 FDM (1.83 ± 1.21) than in 26 NCF (1.02 ± 0.31; P = 0.02). In the same fetuses, mean left atrial shortening was decreased (0.40 ± 0.11) in relation to NCF (0.51 ± 0.09; P = 0.011). These results suggest that FDM may have a higher preload than normal controls, probably as a result of increased myocardial mass and LV hypertrophy. Prenatal assessment of LV diastolic function by fetal echocardiography should include analysis of septum primum mobility, pulmonary vein pulsatility, and left atrial shortening.
Resumo:
T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM), hydraulic permeability (P HYDR) and transport-associated net water fluxes (J W-transp), as well as short-circuit current (I SC), transepithelial resistance (R T), and potential difference (deltaV T) were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.
Resumo:
Crude brain homogenates of terminally diseased hamsters infected with the 263 K strain of scrapie (PrP Sc) were heated and/or pressurized at 800 MPa at 60ºC for different times (a few seconds or 5, 30, 120 min) in phosphate-buffered saline (PBS) of different pH and concentration. Prion proteins were analyzed on immunoblots for their proteinase K (PK) resistance, and in hamster bioassays for their infectivity. Samples pressurized under initially neutral conditions and containing native PrP Sc were negative on immunoblots after PK treatment, and a 6-7 log reduction of infectious units per gram was found when the samples were pressurized in PBS of pH 7.4 for 2 h. A pressure-induced change in the protein conformation of native PrP Sc may lead to less PK resistant and less infectious prions. However, opposite results were obtained after pressurizing native infectious prions at slightly acidic pH and in PBS of higher concentration. In this case an extensive fraction of native PrP Sc remained PK resistant after pressure treatment, indicating a protective effect possibly due to induced aggregation of prion proteins in such buffers.
Resumo:
In this thesis properties and influence of modification techniques of porous silicon were studied by Atomic Force Microscope (AFM). This device permits to visualize the surface topography and to study properties of the samples on atomic scale, which was necessary for recent investigation. Samples of porous silicon were obtained by electrochemical etching. Nickel particles were deposited by two methods: electrochemical deposition and extracting from NiCl2 ethanol solution. Sample growth was conducted in Saint-Petersburg State Electrotechnical University, LETI. Kelvin probe force microscopy (KPFM) and Magnetic force microscopy (MFM) were utilized for detailed information about surface properties of the samples. Measurements showed the difference in morphology correlating with initial growth conditions. Submicron size particles were clearly visible on surfaces of the treated samples. Although their nature was not clarified due to limitations of AFM technique. It is expected that surfaces were covered by nanometer scale Ni particles, which can be verified by implication of RAMAN device.
Resumo:
In this thesis the effect of focal point parameters in fiber laser welding of structural steel is studied. The goal is to establish relations between laser power, focal point diameter and focal point position with the resulting quality, weld-bead geometry and hardness of the welds. In the laboratory experiments, AB AH36 shipbuilding steel was welded in an I-butt joint configuration using IPG YLS-10000 continuous wave fiber laser. The quality of the welds produced were evaluated based on standard SFS-EN ISO 13919-1. The weld-bead geometry was defined from the weld cross-sections and Vickers hardness test was used to measure hardness's from the middle of the cross-sections. It was shown that all the studied focal point parameters have an effect on the quality, weld-bead geometry and hardness of the welds produced.
Resumo:
Atomic Layer Deposition (ALD) is the technology of choice where very thin and highquality films are required. Its advantage is its ability to deposit dense and pinhole-free coatings in a controllable manner. It has already shown promising results in a range of applications, e.g. diffusion barrier coatings for OLED displays, surface passivation layers for solar panels. Spatial Atomic Layer Deposition (SALD) is a concept that allows a dramatic increase in ALD throughput. During the SALD process, the substrate moves between spatially separated zones filled with the respective precursor gases and reagents in such a manner that the exposure sequence replicates the conventional ALD cycle. The present work describes the development of a high-throughput ALD process. Preliminary process studies were made using an SALD reactor designed especially for this purpose. The basic properties of the ALD process were demonstrated using the wellstudied Al2O3 trimethyl aluminium (TMA)+H2O process. It was shown that the SALD reactor is able to deposit uniform films in true ALD mode. The ALD nature of the process was proven by demonstrating self-limiting behaviour and linear film growth. The process behaviour and properties of synthesized films were in good agreement with previous ALD studies. Issues related to anomalous deposition at low temperatures were addressed as well. The quality of the coatings was demonstrated by applying 20 nm of the Al2O3 on to polymer substrate and measuring its moisture barrier properties. The results of tests confirmed the superior properties of the coatings and their suitability for flexible electronics encapsulation. Successful results led to the development of a pilot scale roll-to-roll coating system. It was demonstrated that the system is able to deposit superior quality films with a water transmission rate of 5x10-6 g/m2day at a web speed of 0.25 m/min. That is equivalent to a production rate of 180 m2/day and can be potentially increased by using wider webs. State-of-art film quality, high production rates and repeatable results make SALD the technology of choice for manufacturing ultra-high barrier coatings for flexible electronics.
Resumo:
Heart rate variability (HRV) provides important information about cardiac autonomic modulation. Since it is a noninvasive and inexpensive method, HRV has been used to evaluate several parameters of cardiovascular health. However, the internal reproducibility of this method has been challenged in some studies. Our aim was to determine the intra-individual reproducibility of HRV parameters in short-term recordings obtained in supine and orthostatic positions. Electrocardiographic (ECG) recordings were obtained from 30 healthy subjects (20-49 years, 14 men) using a digital apparatus (sampling ratio = 250 Hz). ECG was recorded for 10 min in the supine position and for 10 min in the orthostatic position. The procedure was repeated 2-3 h later. Time and frequency domain analyses were performed. Frequency domain included low (LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 Hz) bands. Power spectral analysis was performed by the autoregressive method and model order was set at 16. Intra-subject agreement was assessed by linear regression analysis, test of difference in variances and limits of agreement. Most HRV measures (pNN50, RMSSD, LF, HF, and LF/HF ratio) were reproducible independent of body position. Better correlation indexes (r > 0.6) were obtained in the orthostatic position. Bland-Altman plots revealed that most values were inside the agreement limits, indicating concordance between measures. Only SDNN and NNv in the supine position were not reproducible. Our results showed reproducibility of HRV parameters when recorded in the same individual with a short time between two exams. The increased sympathetic activity occurring in the orthostatic position probably facilitates reproducibility of the HRV indexes.
Resumo:
Metabolic syndrome (MS) is a multifactorial disease involving inflammatory activity and endothelial dysfunction. The aim of the present study was to evaluate the relationship between the changes in lipoperoxidation, in immunological and biochemical parameters and nitric oxide metabolite (NOx) levels in MS patients. Fifty patients with MS (4 males/46 females) and 50 controls (3 males/47 females) were studied. Compared to control (Mann-Whitney test), MS patients presented higher serum levels (P < 0.05) of fibrinogen: 314 (185-489) vs 262 (188-314) mg/dL, C-reactive protein (CRP): 7.80 (1.10-46.50) vs 0.70 (0.16-5.20) mg/dL, interleukin-6: 3.96 (3.04-28.18) vs 3.33 (2.55-9.63) pg/mL, uric acid: 5.45 (3.15-9.65) vs 3.81 (2.70-5.90) mg/dL, and hydroperoxides: 20,689 (19,076-67,182) vs 18,636 (15,926-19,731) cpm. In contrast, they presented lower (P < 0.05) adiponectin: 7.11 (3.19-18.22) vs 12.31 (9.11-27.27) µg/mL, and NOx levels: 5.69 (2.36-8.18) vs 6.72 (5.14-12.43) µM. NOx was inversely associated (Spearman’s rank correlation) with body mass index (r = -0.2858, P = 0.0191), insulin resistance determined by the homeostasis model assessment (r = -0.2530, P = 0.0315), CRP (r = -0.2843, P = 0.0171) and fibrinogen (r = -0.2464, P = 0.0413), and positively correlated with hydroperoxides (r = 0.2506, P = 0.0408). In conclusion, NOx levels are associated with obesity, insulin resistance, oxidative stress, and inflammatory markers. The high uric acid levels together with reactive oxygen species generation may be responsible for the reduced NO levels, which in turn lead to endothelial dysfunction. The elevated plasma chemiluminescence reflecting both increased plasma oxidation and reduced antioxidant capacity may play a role in the MS mechanism.
Resumo:
The health-promoting effects of exercise training (ET) are related to nitric oxide (NO) production and/or its bioavailability. The objective of this study was to determine whether single nucleotide polymorphism of the endothelial NO synthase (eNOS) gene at positions -786T>C, G894T (Glu298Asp) and at the variable number of tandem repeat (VNTR) Intron 4b/a would interfere with the cardiometabolic responses of postmenopausal women submitted to physical training. Forty-nine postmenopausal women were trained in sessions of 30-40 min, 3 days a week for 8 weeks. Genotypes, oxidative stress status and cardiometabolic parameters were then evaluated in a double-blind design. Both systolic and diastolic blood pressure values were significantly reduced after ET, which was genotype-independent. However, women without eNOS gene polymorphism at position -786T>C (TT genotype) and Intron 4b/a (bb genotype) presented a better reduction of total cholesterol levels (-786T>C: before = 213 ± 12.1, after = 159.8 ± 14.4, Δ = -24.9% and Intron 4b/a: before = 211.8 ± 7.4, after = 180.12 ± 6.4 mg/dL, Δ = -15%), and LDL cholesterol (-786T>C: before = 146.1 ± 13.3, after = 82.8 ± 9.2, Δ = -43.3% and Intron 4b/a: before = 143.2 ± 8, after = 102.7 ± 5.8 mg/dL, Δ = -28.3%) in response to ET compared to those who carried the mutant allele. Superoxide dismutase activity was significantly increased in trained women whereas no changes were observed in malondialdehyde levels. Women without eNOS gene polymorphism at position -786T>C and Intron 4b/a showed a greater reduction of plasma cholesterol levels in response to ET. Furthermore, no genotype influence was observed on arterial blood pressure or oxidative stress status in this population.
Resumo:
Dietary fat composition can interfere in the development of obesity due to the specific roles of some fatty acids that have different metabolic activities, which can alter both fat oxidation and deposition rates, resulting in changes in body weight and/or composition. High-fat diets in general are associated with hyperphagia, but the type of dietary fat seems to be more important since saturated fats are linked to a positive fat balance and omental adipose tissue accumulation when compared to other types of fat, while polyunsaturated fats, omega-3 and omega-6, seem to increase energy expenditure and decrease energy intake by specific mechanisms involving hormone-sensitive lipase, activation of peroxisome proliferator-activated receptor α (PPARα) and others. Saturated fat intake can also impair insulin sensitivity compared to omega-3 fat, which has the opposite effect due to alterations in cell membranes. Obesity is also associated with impaired mitochondrial function. Fat excess favors the production of malonyl-CoA, which reduces GLUT4 efficiency. The tricarboxylic acid cycle and beta-oxidation are temporarily uncoupled, forming metabolite byproducts that augment reactive oxygen species production. Exercise can restore mitochondrial function and insulin sensitivity, which may be crucial for a better prognosis in treating or preventing obesity.
Resumo:
Human serum paraoxonase contributes to the anti-atherogenic effect of high-density lipoprotein cholesterol (HDL-C) and has been shown to protect both low-density lipoprotein cholesterol (LDL-C) and HDL-C against lipid peroxidation. We investigated the effects of rosiglitazone on paraoxonase activity and metabolic parameters in patients with type 2 diabetes mellitus [50 patients (30 males, 20 females); mean±SD age: 58.7±9.2 years, body mass index: 28.2±4.1'kg/m2], in whom glucose control could not be achieved despite treatment with metformin, sulphonylurea, and/or insulin. The patients were given 4'mg/day rosiglitazone for 3 months in addition to their usual treatment. Serum paraoxonase activity, malondialdehyde, homocysteine, and lipid profile were measured at the time of initiation and at the end of therapy with rosiglitazone. After rosiglitazone therapy, serum levels of HDL-C, apolipoprotein A-1, and paraoxonase activity increased significantly (P<0.05) and malondialdehyde, homocysteine, lipoprotein(a), and glucose levels decreased significantly (P<0.05), but no significant changes in levels of total cholesterol and apolipoprotein B were observed. Triglyceride levels also increased significantly (P<0.05). Rosiglitazone treatment led to an improvement in glycemic control and to an increase in paraoxonase activity and HDL-C levels. Although rosiglitazone showed favorable effects on oxidant/antioxidant balance and lipid profile, further studies are needed to determine the effect of rosiglitazone on cardiovascular risk factors and cardiovascular morbidity and mortality.
Resumo:
Immobilization, used in clinical practice to treat traumatologic problems, causes changes in muscle, but it is not known whether changes also occur in nerves. We investigated the effects of immobilization on excitability and compound action potential (CAP) and the ultrastructure of the rat sciatic nerve. Fourteen days after immobilization of the right leg of adult male Wistar rats (n=34), animals were killed and the right sciatic nerve was dissected and mounted in a moist chamber. Nerves were stimulated at a baseline frequency of 0.2 Hz and tested for 2 min at 20, 50, and 100 Hz. Immobilization altered nerve excitability. Rheobase and chronaxy changed from 3.13±0.05 V and 52.31±1.95 µs (control group, n=13) to 2.84±0.06 V and 59.71±2.79 µs (immobilized group, n=15), respectively. Immobilization altered the amplitude of CAP waves and decreased the conduction velocity of the first CAP wave (from 93.63±7.49 to 79.14±5.59 m/s) but not of the second wave. Transmission electron microscopy showed fragmentation of the myelin sheath of the sciatic nerve of immobilized limbs and degeneration of the axon. In conclusion, we demonstrated that long-lasting leg immobilization can induce alterations in nerve function.