997 resultados para Atlantic Caribbean Margin


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species distribution patterns in planktonic foraminiferal assemblages are fundamental to the understanding of the determinants of their ecology. Until now, data used to identify such distribution patterns was mainly acquired using the standard >150 µm sieve size. However, given that assemblage shell size-range in planktonic foraminifera is not constant, this data acquisition practice could introduce artefacts in the distributional data. Here, we investigated the link between assemblage shell size-range and diversity in Recent planktonic foraminifera by analysing multiple sieve-size fractions in 12 samples spanning all bioprovinces of the Atlantic Ocean. Using five diversity indices covering various aspects of community structure, we found that counts from the >63 µm fraction in polar oceans and the >125 µm elsewhere sufficiently approximate maximum diversity in all Recent assemblages. Diversity values based on counts from the >150 µm fraction significantly underestimate maximum diversity in the polar and surprisingly also in the tropical provinces. Although the new methodology changes the shape of the diversity/sea-surface temperature (SST) relationship, its strength appears unaffected. Our analysis reveals that increasing diversity in planktonic foraminiferal assemblages is coupled with a progressive addition of larger species that have distinct, offset shell-size distributions. Thus, the previously documented increase in overall assemblage shell size-range towards lower latitudes is linked to an expanding shell-size disparity between species from the same locality. This observation supports the idea that diversity and shell size-range disparity in foraminiferal assemblages are the result of niche separation. Increasing SST leads to enhanced surface water stratification and results in vertical niche separation, which permits ecological specialisation. Specific deviations from the overall diversity and shell-size disparity latitudinal pattern are seen in regions of surface-water instability, indicating that coupled shell-size and diversity measurements could be used to reconstruct water column structures of past oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two late Quaternary sediment cores from the northern Cape Basin in the eastern South Atlantic Ocean were analyzed for their benthic foraminiferal content and benthic stable carbon isotope composition. The locations of the cores were selected such that both of them presently are bathed by North Atlantic Deep Water (NADW) and past changes in deep water circulation should be recorded simultaneously at both locations. However, the areas are different in terms of primary production. One core was recovered from the nutrient-depleted Walvis Ridge area, whereas the other one is from the continental slope just below the coastal upwelling mixing area where present day organic matter fluxes are shown to be moderately high. Recent data served as the basis for the interpretation of the late Quaternary faunal fluctuations and the paleoceanographic reconstruction. During the last 450,000 years, NADW flux into the eastern South Atlantic Ocean has been restricted to interglacial periods, with the strongest dominance of a NADW-driven deep water circulation during interglacial stages 1, 9 and 11. At the continental margin, high productivity faunas and very low epibenthic d13C values indicate enhanced fluxes of organic matter during glacial periods. This can be attributed to a glacial increase and lateral extension of coastal upwelling. The long term glacial-interglacial paleoproductivity cycles are superimposed by high-frequency variations with a period of about 23,000 yr. Enhanced productivity in surface waters above the Walvis Ridge, far from the coast, is indicated during glacial stages 8, 10 and 12. During these periods, cold, nutrient-rich filaments from the mixing area were probably driven as far as to the southeastern flank of the Walvis Ridge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stable isotope record from the eastern Weddell Sea from 69°S is presented. For the first time, a 250,000-yr record from the Southern Ocean can be correlated in detail to the global isotope stratigraphy. Together with magnetostratigraphic, sedimentological and micropalaeontological data, the stratigraphic control of this record can be extended back to 910,000 yrs B.P. A time scale is constructed by linear interpolation between confirmed stratigraphic data points. The benthic d18O record (Epistominella exigua) reflects global continental ice volume changes during the Brunhes and late Matuyama chrons, whereas the planktonic isotopic record (Neogloboquadrina pachyderma) may be influenced by a meltwater lid caused by the nearby Antarctic ice shelf and icebergs. The worldwide climatic improvement during deglaciations is documented in the eastern Weddell Sea by an increase in production of siliceous plankton followed, with a time lag of approximately 10,000 yrs, by planktonic foraminifera production. Peak values in the difference between planktonic and benthic d13C records, which are 0.5 per mil higher during warm climatic periods than during times with expanded continental ice sheets, also suggest increased surface productivity during interglacials in the Southern Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the late Quaternary, both external and internal forcings have driven major climatic shifts from glacial to interglacial conditions. Nonlinear climatic steps characterized the transitions leading to these extrema, with intermediate excursions particularly well xpressed in the dynamics of the Northern Hemisphere cryosphere. Here we document the impact of these dynamics on the north-eastern North Atlantic Ocean, focussing on the 35-10 ka interval. Sea-surface salinities have been reconstructed quantitatively based on two independent methods from core MD95-2002, recovered from the northern Bay of Biscay adjacent to the axis of the Manche paleoriver outlet and thus in connection with proximal European ice sheets and glaciers. Quantitative reconstructions deriving from dinocyst and planktonic foraminiferal analyses have been combined within a robust chronology to assess the amplitude and timing of hydrological changes in this region. Our study evidences strong pulsed freshwater discharges which may have impacted the North Atlantic Meridional Overturning Circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four cores raised from the eastern Norwegian Sea and adjacent Norwegian fjords at sites influenced by Atlantic water have been investigated. Oxygen isotope analyses in benthic and planktonic foraminifera are used as a proxy for the paleotemperature development spanning the last 800 years. The cores have been dated using a combination of 210Pb and radiocarbon dates yielding time resolutions of 2-5 years for the last century and 9-25 years beyond this. The proxy records have been compared with instrumental time series covering the last 100 years in order to validate the oxygen isotope measurements as a proxy for paleotemperature. The comparison shows that the paleotemperature variability derived from the oxygen isotope analyses is generally similar to the amplitudes and trends seen in the instrumental time series. In particular, a cooling around 1905-1925 followed by a warming until 1955 is evident in all proxy records as well as in the instrumental time series. Beyond the last century the proxy records show two periods from ~1225-1450 and ~1650-1905(25) when temperatures were 1.3-1.6°C lower than present separated by a period of temperatures periodically comparable to present. The last 80 years represent the modern warming and appear to be the warmest period of the last 800 years. We find that that the ocean temperature variability is comparable to terrestrial reconstructions from the region implying a strong link in the ocean-atmosphere climate system. This suggests that the climate variability in this region beyond the period covered by instrumental time series was also associated with changes in the thermohaline circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A statistical analysis ol 15 deep sea cores in the eastern North Atlantic off NW Africa revealed the typical fluctuation pattern of distinct species proups as has been described from various parts of the world ocean. Only the "WBF-group" appears to be correlated with global climatic changes, i.e. warmer periods as the Eemian and the Atlanticum. A partly antagonistic "High Productivity group" (HPR-group) is in general not linked with global changes but times of increased fertility in the surface water and the resulting flux of organic matter reaching the bottom. The groups were extracted from cluster analysis of more than 150 surface samples (HPR-group) and a factor analysis of selected cores (WBF-group). In contrast to previous studies the observed fluctuations can not be explained by drastic changes in bottom water masses, but by the pulsation of a distinct "High Productivity Patch" in space and time. At present, this patch is located below the well known upwelling area between 22° and 12° northern latitude. It shifted to the north (up to 27 °N) during the latest glacial period ( 18 ky), indicating an equivalent shift of upwelling productivity caused by advection of nutrient rich upwelling SACW-waters, probably during most of isotopic stages 2 and 3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface sediments from the continental slope and rise of North-West Africa between the Canary lslands and the Cape Verde Islands are mainly composed of silt-sized material (2-63 µm). A number of sampling profiles were run normal to the coast and the composition of the silt fraction was determined quantitatively by scanning electron microscope analysis. The carbonate portion of the sediment was found to be nearly exclusively of biogenic origin. The most important contributors are planktonic foraminifers and coccoliths with minor contributions derived from pteropods. Plankton-produced biogenic opal such as diatoms and radiolarians play a very minor role. The high production rates of opal-silica plankton which exists in the surface waters of the NW-African upwelling system does not give rise to corresponding increases of opal accumulation in the bottom sediment. Benthic producers consist mainly of foraminifers and molluscs but the entire input from benthic producers is extremely small. An exception to this occurs in the prodelta sediments of the Senegal river. Downslope particle transport is indicated by the occurrence of shallow-water coralline algae, ascidian sclerites and cliona boring chips and can be traced as far down as the continental rise. The non-carbonate silt fraction mostly consists of quartz which is derived as eolian dust from the Sahara desert by the Harmattan and the NE-Trade-wind system. The percentage of carbonate in the surface sediments directly indicates the relative proportions of autochthonous biogenic components and terrigenous allochthonous quartz particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the sediments of the NW African continental margin the mainly biogenic carbonate constituents become increasingly diluted with terrigenous material as one approaches the coast, as indicated by the carbonate-CO2 content, the Al2O3/SiO2-ratios, and the presence of ammonia fixed to alumino-silicates, predominantly to illites. In the norther area of the investigation - off Cape Blanc and Cape Bojador . the terrigenous constituents are mainly quartz from the Sahara Desert, whereas in the south - off Senegal - more alumino-silicates as clay minerals are admixed with the carbonate constituents. The organic carbon content of the continental slope sediments off Senegal is higher than in samples of the continental rise or of the preservation of organic matter as a result of high production and relatively rapid sedimentation. The zone of manganese-oxide enrichment follows the redox potential of + 330 mV from the surface (0-5 cm) into the sediments (20-30 cm deep) at 2000--3000 m and 3700 m of water depths, respectively. At shallower water depths, low redox potentials preclude deposition of manganese oxides and cause their mobilization from the sediments. About 1/3 of the total sedimentary Zn and 1/4 of the Cu is associated with the carbonate mineral fraction, probably in calcium phosphate overgrowths as a result of the mineralization of phosphorus-containing organic matter. Besides the precipitation of calcium phosphate, the mineralization of organic matter mediated by bacterial sulfate reduction also results in calcium carbonate precipitation and the exchange of ammonia for potassium on illites. Because of these simultaneous reactions, the depth distribution of all mineralization constituents in the interstitial water can be determined using the actual molar carbon-to-nitrogen-to phosphorus ratios of the sedimentary organic matter. The amount of sulfide sulfur in this process indicates the predominance of bacterial sulfate reduction in the sediments off NW Africa. This process also preferentially decomposes nitrogen- and phosphorus-containing organic compounds so organic matter deficient in these elements is characteristic for the rapidly accumulating sediments than today, indicating there was increased production of organic carbon compounds and more favorable conditions of their preservations. During the last interglacial times conditions were similar to those to today. This differentiation with time has also been observed in sediments from the Argentine Basin and from slope off South India indicating perhaps world-wide environmental changes throughout Late Quaternary times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Weichselian and Holocene dinoflagellate cyst assemblages have been investigated at two stations situated close to the modern Polar Front at the continental margin oft East Greenland. Both the concentrations of dinoflagelate cysts and the assemblage composition reflect changes in the surface water conditions, occurring in distinct steps during the past 15,000 years. Low concentrations of dinoflagellate cysts during Termination Ia suggest harsh environmental conditions, most probably caused by an extensive sea-ice cover and/or a high influx of low salinity meltwater. A surface water warming was recorded from 13,000 - 12,000 years BP, related to the inflow of warmer water trom the North Atlantic into the western Norwegian-Greenland Sea. The interval between Terminations la and Ib was characterized by a strong seasonality with an extensive sea-ice cover in winter and relatively warm surface waters in summer. At the transition to the Holocene, a reorganisation of the hydrography resulted in surface water conditions characteristic for the Holocene with three well-defined major water masses and oceanographic fronts The modern water mass conditions at both stations were established at the end of Termination Ib, around 6,400 to 6,800 years BP. In general, the influence of colder surface waters was more pronounced at the location off Scoresby Sund throughout the Holocene. Arctic water had the strongest influence at both stations in the middle Holocene. A progressive cooling with an increase in sea-ice cover is time-transgressivelyrecorded at both stations during the Holocene, indicating that the Polar Front moved to its present position or that branches of the zonal currents expanded from the East Greenland shell eastward during tlie last 3,000 years.