855 resultados para Asynchronous iterative algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global analysis of logic programs can be performed effectively by the use of one of several existing efficient algorithms. However, the traditional global analysis scheme in which all the program code is known in advance and no previous analysis information is available is unsatisfactory in many situations. Incrementa! analysis of logic programs has been shown to be feasible and much more efficient in certain contexts than traditional (non-incremental) global analysis. However, incremental analysis poses additional requirements on the fixpoint algorithm used. In this work we identify these requirements, present an important class of strategies meeting the requirements, present sufficient a priori conditions for such strategies, and propose, implement, and evalúate experimentally a novel algorithm for incremental analysis based on these ideas. The experimental results show that the proposed algorithm performs very efficiently in the incremental case while being comparable to (and, in some cases, considerably better than) other state-of-the-art analysis algorithms even for the non-incremental case. We argüe that our discussions, results, and experiments also shed light on some of the many tradeoffs involved in the design of algorithms for logic program analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to their similarity. On the other hand, supervised classification needs data with supervision (labeled data) and its aim is to make predictions about labels of new data. The presence of data labels is a very important characteristic that guides not only the learning task but also other related tasks such as validation. When only some of the available data are labeled whereas the others remain unlabeled (partially labeled data), neither clustering nor supervised classification can be used. This scenario, which is becoming common nowadays because of labeling process ignorance or cost, is tackled with semi-supervised learning techniques. This thesis focuses on the branch of semi-supervised learning closest to clustering, i.e., to discover clusters using available labels as support to guide and improve the clustering process. Another important data characteristic, different from the presence of data labels, is the relevance or not of data features. Data are characterized by features, but it is possible that not all of them are relevant, or equally relevant, for the learning process. A recent clustering tendency, related to data relevance and called subspace clustering, claims that different clusters might be described by different feature subsets. This differs from traditional solutions to data relevance problem, where a single feature subset (usually the complete set of original features) is found and used to perform the clustering process. The proximity of this work to clustering leads to the first goal of this thesis. As commented above, clustering validation is a difficult task due to the absence of data labels. Although there are many indices that can be used to assess the quality of clustering solutions, these validations depend on clustering algorithms and data characteristics. Hence, in the first goal three known clustering algorithms are used to cluster data with outliers and noise, to critically study how some of the most known validation indices behave. The main goal of this work is however to combine semi-supervised clustering with subspace clustering to obtain clustering solutions that can be correctly validated by using either known indices or expert opinions. Two different algorithms are proposed from different points of view to discover clusters characterized by different subspaces. For the first algorithm, available data labels are used for searching for subspaces firstly, before searching for clusters. This algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping known labels to subspaces using supervised classification techniques. Subspaces are then used to find clusters using traditional clustering techniques. The second algorithm uses available data labels to search for subspaces and clusters at the same time in an iterative process. This algorithm assigns each instance to each cluster based on a membership probability (soft clustering) and is based on integrating known labels and the search for subspaces into a model-based clustering approach. The different proposals are tested using different real and synthetic databases, and comparisons to other methods are also included when appropriate. Finally, as an example of real and current application, different machine learning tech¬niques, including one of the proposals of this work (the most sophisticated one) are applied to a task of one of the most challenging biological problems nowadays, the human brain model¬ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain cortex, which makes impossible not only any modeling attempt but also the day-to-day work without a common way to name neurons. Therefore, machine learning techniques may help to get an accepted solution to this problem, which can be an important milestone for future research in neuroscience. Resumen Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos. Hoy en día, la importancia de estas técnicas está siendo incluso mayor, debido a que la evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes características que deben ser explotadas. Por lo tanto, los avances en la recolección de datos deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos retos que pueden aparecer, tanto en aplicaciones académicas como reales. Existen varias técnicas de aprendizaje automático dependiendo de las características de los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las etiquetas es una característica muy importante que guía no solo el aprendizaje sino también otras tareas relacionadas como la validación. Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en día debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles como apoyo para guiar y mejorar el proceso de clustering. Otra característica importante de los datos, distinta de la presencia de etiquetas, es la relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para el problema de la relevancia de los datos, en las que se busca un único subconjunto de atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso de clustering. La cercanía de este trabajo con el clustering lleva al primer objetivo de la tesis. Como se ha comentado previamente, la validación en clustering es una tarea difícil debido a la ausencia de etiquetas. Aunque existen muchos índices que pueden usarse para evaluar la calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de clustering utilizados y de las características de los datos. Por lo tanto, en el primer objetivo tres conocidos algoritmos se usan para agrupar datos con valores atípicos y ruido para estudiar de forma crítica cómo se comportan algunos de los índices de validación más conocidos. El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas de forma correcta utilizando índices conocidos u opiniones expertas. Se proponen dos algoritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus¬car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru¬paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones con otros métodos cuando resulten apropiadas. Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en día, el modelado del cerebro humano. Específicamente, expertos neurocientíficos no se ponen de acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo cualquier intento de modelado sino también el trabajo del día a día al no tener una forma estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un importante hito para investigaciones futuras en neurociencia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El estudio de materiales, especialmente biológicos, por medios no destructivos está adquiriendo una importancia creciente tanto en las aplicaciones científicas como industriales. Las ventajas económicas de los métodos no destructivos son múltiples. Existen numerosos procedimientos físicos capaces de extraer información detallada de las superficie de la madera con escaso o nulo tratamiento previo y mínima intrusión en el material. Entre los diversos métodos destacan las técnicas ópticas y las acústicas por su gran versatilidad, relativa sencillez y bajo coste. Esta tesis pretende establecer desde la aplicación de principios simples de física, de medición directa y superficial, a través del desarrollo de los algoritmos de decisión mas adecuados basados en la estadística, unas soluciones tecnológicas simples y en esencia, de coste mínimo, para su posible aplicación en la determinación de la especie y los defectos superficiales de la madera de cada muestra tratando, en la medida de lo posible, no alterar su geometría de trabajo. Los análisis desarrollados han sido los tres siguientes: El primer método óptico utiliza las propiedades de la luz dispersada por la superficie de la madera cuando es iluminada por un laser difuso. Esta dispersión produce un moteado luminoso (speckle) cuyas propiedades estadísticas permiten extraer propiedades muy precisas de la estructura tanto microscópica como macroscópica de la madera. El análisis de las propiedades espectrales de la luz laser dispersada genera ciertos patrones mas o menos regulares relacionados con la estructura anatómica, composición, procesado y textura superficial de la madera bajo estudio que ponen de manifiesto características del material o de la calidad de los procesos a los que ha sido sometido. El uso de este tipo de láseres implica también la posibilidad de realizar monitorizaciones de procesos industriales en tiempo real y a distancia sin interferir con otros sensores. La segunda técnica óptica que emplearemos hace uso del estudio estadístico y matemático de las propiedades de las imágenes digitales obtenidas de la superficie de la madera a través de un sistema de scanner de alta resolución. Después de aislar los detalles mas relevantes de las imágenes, diversos algoritmos de clasificacion automatica se encargan de generar bases de datos con las diversas especies de maderas a las que pertenecían las imágenes, junto con los márgenes de error de tales clasificaciones. Una parte fundamental de las herramientas de clasificacion se basa en el estudio preciso de las bandas de color de las diversas maderas. Finalmente, numerosas técnicas acústicas, tales como el análisis de pulsos por impacto acústico, permiten complementar y afinar los resultados obtenidos con los métodos ópticos descritos, identificando estructuras superficiales y profundas en la madera así como patologías o deformaciones, aspectos de especial utilidad en usos de la madera en estructuras. La utilidad de estas técnicas esta mas que demostrada en el campo industrial aun cuando su aplicación carece de la suficiente expansión debido a sus altos costes y falta de normalización de los procesos, lo cual hace que cada análisis no sea comparable con su teórico equivalente de mercado. En la actualidad gran parte de los esfuerzos de investigación tienden a dar por supuesto que la diferenciación entre especies es un mecanismo de reconocimiento propio del ser humano y concentran las tecnologías en la definición de parámetros físicos (módulos de elasticidad, conductividad eléctrica o acústica, etc.), utilizando aparatos muy costosos y en muchos casos complejos en su aplicación de campo. Abstract The study of materials, especially the biological ones, by non-destructive techniques is becoming increasingly important in both scientific and industrial applications. The economic advantages of non-destructive methods are multiple and clear due to the related costs and resources necessaries. There are many physical processes capable of extracting detailed information on the wood surface with little or no previous treatment and minimal intrusion into the material. Among the various methods stand out acoustic and optical techniques for their great versatility, relative simplicity and low cost. This thesis aims to establish from the application of simple principles of physics, surface direct measurement and through the development of the more appropriate decision algorithms based on statistics, a simple technological solutions with the minimum cost for possible application in determining the species and the wood surface defects of each sample. Looking for a reasonable accuracy without altering their work-location or properties is the main objetive. There are three different work lines: Empirical characterization of wood surfaces by means of iterative autocorrelation of laser speckle patterns: A simple and inexpensive method for the qualitative characterization of wood surfaces is presented. it is based on the iterative autocorrelation of laser speckle patterns produced by diffuse laser illumination of the wood surfaces. The method exploits the high spatial frequency content of speckle images. A similar approach with raw conventional photographs taken with ordinary light would be very difficult. A few iterations of the algorithm are necessary, typically three or four, in order to visualize the most important periodic features of the surface. The processed patterns help in the study of surface parameters, to design new scattering models and to classify the wood species. Fractal-based image enhancement techniques inspired by differential interference contrast microscopy: Differential interference contrast microscopy is a very powerful optical technique for microscopic imaging. Inspired by the physics of this type of microscope, we have developed a series of image processing algorithms aimed at the magnification, noise reduction, contrast enhancement and tissue analysis of biological samples. These algorithms use fractal convolution schemes which provide fast and accurate results with a performance comparable to the best present image enhancement algorithms. These techniques can be used as post processing tools for advanced microscopy or as a means to improve the performance of less expensive visualization instruments. Several examples of the use of these algorithms to visualize microscopic images of raw pine wood samples with a simple desktop scanner are provided. Wood species identification using stress-wave analysis in the audible range: Stress-wave analysis is a powerful and flexible technique to study mechanical properties of many materials. We present a simple technique to obtain information about the species of wood samples using stress-wave sounds in the audible range generated by collision with a small pendulum. Stress-wave analysis has been used for flaw detection and quality control for decades, but its use for material identification and classification is less cited in the literature. Accurate wood species identification is a time consuming task for highly trained human experts. For this reason, the development of cost effective techniques for automatic wood classification is a desirable goal. Our proposed approach is fully non-invasive and non-destructive, reducing significantly the cost and complexity of the identification and classification process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Due to recent scientific and technological advances in information sys¬tems, it is now possible to perform almost every application on a mobile device. The need to make sense of such devices more intelligent opens an opportunity to design data mining algorithm that are able to autonomous execute in local devices to provide the device with knowledge. The problem behind autonomous mining deals with the proper configuration of the algorithm to produce the most appropriate results. Contextual information together with resource information of the device have a strong impact on both the feasibility of a particu¬lar execution and on the production of the proper patterns. On the other hand, performance of the algorithm expressed in terms of efficacy and efficiency highly depends on the features of the dataset to be analyzed together with values of the parameters of a particular implementation of an algorithm. However, few existing approaches deal with autonomous configuration of data mining algorithms and in any case they do not deal with contextual or resources information. Both issues are of particular significance, in particular for social net¬works application. In fact, the widespread use of social networks and consequently the amount of information shared have made the need of modeling context in social application a priority. Also the resource consumption has a crucial role in such platforms as the users are using social networks mainly on their mobile devices. This PhD thesis addresses the aforementioned open issues, focusing on i) Analyzing the behavior of algorithms, ii) mapping contextual and resources information to find the most appropriate configuration iii) applying the model for the case of a social recommender. Four main contributions are presented: - The EE-Model: is able to predict the behavior of a data mining algorithm in terms of resource consumed and accuracy of the mining model it will obtain. - The SC-Mapper: maps a situation defined by the context and resource state to a data mining configuration. - SOMAR: is a social activity (event and informal ongoings) recommender for mobile devices. - D-SOMAR: is an evolution of SOMAR which incorporates the configurator in order to provide updated recommendations. Finally, the experimental validation of the proposed contributions using synthetic and real datasets allows us to achieve the objectives and answer the research questions proposed for this dissertation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

García et al. present a class of column generation (CG) algorithms for nonlinear programs. Its main motivation from a theoretical viewpoint is that under some circumstances, finite convergence can be achieved, in much the same way as for the classic simplicial decomposition method; the main practical motivation is that within the class there are certain nonlinear column generation problems that can accelerate the convergence of a solution approach which generates a sequence of feasible points. This algorithm can, for example, accelerate simplicial decomposition schemes by making the subproblems nonlinear. This paper complements the theoretical study on the asymptotic and finite convergence of these methods given in [1] with an experimental study focused on their computational efficiency. Three types of numerical experiments are conducted. The first group of test problems has been designed to study the parameters involved in these methods. The second group has been designed to investigate the role and the computation of the prolongation of the generated columns to the relative boundary. The last one has been designed to carry out a more complete investigation of the difference in computational efficiency between linear and nonlinear column generation approaches. In order to carry out this investigation, we consider two types of test problems: the first one is the nonlinear, capacitated single-commodity network flow problem of which several large-scale instances with varied degrees of nonlinearity and total capacity are constructed and investigated, and the second one is a combined traffic assignment model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a tool to carry out the multifractal analysis of binary, two-dimensional images through the calculation of the Rényi D(q) dimensions and associated statistical regressions. The estimation of a (mono)fractal dimension corresponds to the special case where the moment order is q = 0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landcover is subject to continuous changes on a wide variety of temporal and spatial scales. Those changes produce significant effects in human and natural activities. Maintaining an updated spatial database with the occurred changes allows a better monitoring of the Earth?s resources and management of the environment. Change detection (CD) techniques using images from different sensors, such as satellite imagery, aerial photographs, etc., have proven to be suitable and secure data sources from which updated information can be extracted efficiently, so that changes can also be inventoried and monitored. In this paper, a multisource CD methodology for multiresolution datasets is applied. First, different change indices are processed, then different thresholding algorithms for change/no_change are applied to these indices in order to better estimate the statistical parameters of these categories, finally the indices are integrated into a change detection multisource fusion process, which allows generating a single CD result from several combination of indices. This methodology has been applied to datasets with different spectral and spatial resolution properties. Then, the obtained results are evaluated by means of a quality control analysis, as well as with complementary graphical representations. The suggested methodology has also been proved efficiently for identifying the change detection index with the higher contribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the capacity and the interference statistics of the uplink of high-altitude platforms (HAPs) for asynchronous and synchronous WCDMA system assuming finite transmission power and imperfect power control are studied. Propagation loss used to calculate the received signal power is due to the distance, shadowing, and wall insertion loss. The uplink capacity for 3- and 3.75-G services is given for different cell radius assuming outdoor and indoor voice users only, data users only and a combination of the two services. For 37 macrocells HAP, the total uplink capacity is 3,034 outdoor voice users or 444 outdoor data users. When one or more than one user is an indoor user, the uplink capacity is 2,923 voice users or 444 data users when the walls entry loss is 10 dB. It is shown that the effect of the adjacent channels interference is very small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The algorithms and graphic user interface software package ?OPT-PROx? are developed to meet food engineering needs related to canned food thermal processing simulation and optimization. The adaptive random search algorithm and its modification coupled with penalty function?s approach, and the finite difference methods with cubic spline approximation are utilized by ?OPT-PROx? package (http://tomakechoice. com/optprox/index.html). The diversity of thermal food processing optimization problems with different objectives and required constraints are solvable by developed software. The geometries supported by the ?OPT-PROx? are the following: (1) cylinder, (2) rectangle, (3) sphere. The mean square error minimization principle is utilized in order to estimate the heat transfer coefficient of food to be heated under optimal condition. The developed user friendly dialogue and used numerical procedures makes the ?OPT-PROx? software useful to food scientists in research and education, as well as to engineers involved in optimization of thermal food processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a time-domain stochastic system identification method based on maximum likelihood estimation (MLE) with the expectation maximization (EM) algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. The benchmark structure is a four-story, two-bay by two-bay steel-frame scale model structure built in the Earthquake Engineering Research Laboratory at the University of British Columbia, Canada. This paper focuses on Phase I of the analytical benchmark studies. A MATLAB-based finite element analysis code obtained from the IASC-ASCE SHM Task Group web site is used to calculate the dynamic response of the prototype structure. A number of 100 simulations have been made using this MATLAB-based finite element analysis code in order to evaluate the proposed identification method. There are several techniques to realize system identification. In this work, stochastic subspace identification (SSI)method has been used for comparison. SSI identification method is a well known method and computes accurate estimates of the modal parameters. The principles of the SSI identification method has been introduced in the paper and next the proposed MLE with EM algorithm has been explained in detail. The advantages of the proposed structural identification method can be summarized as follows: (i) the method is based on maximum likelihood, that implies minimum variance estimates; (ii) EM is a computational simpler estimation procedure than other optimization algorithms; (iii) estimate more parameters than SSI, and these estimates are accurate. On the contrary, the main disadvantages of the method are: (i) EM algorithm is an iterative procedure and it consumes time until convergence is reached; and (ii) this method needs starting values for the parameters. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using both the SSI method and the proposed MLE + EM method. The numerical results show that the proposed method identifies eigenfrequencies, damping ratios and mode shapes reasonably well even in the presence of 10% measurement noises. These modal parameters are more accurate than the SSI estimated modal parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element hp-adaptivity is a technology that allows for very accurate numerical solutions. When applied to open region problems such as radar cross section prediction or antenna analysis, a mesh truncation method needs to be used. This paper compares the following mesh truncation methods in the context of hp-adaptive methods: Infinite Elements, Perfectly Matched Layers and an iterative boundary element based methodology. These methods have been selected because they are exact at the continuous level (a desirable feature required by the extreme accuracy delivered by the hp-adaptive strategy) and they are easy to integrate with the logic of hp-adaptivity. The comparison is mainly based on the number of degrees of freedom needed for each method to achieve a given level of accuracy. Computational times are also included. Two-dimensional examples are used, but the conclusions directly extrapolated to the three dimensional case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monte Carlo (MC) method can accurately compute the dose produced by medical linear accelerators. However, these calculations require a reliable description of the electron and/or photon beams delivering the dose, the phase space (PHSP), which is not usually available. A method to derive a phase space model from reference measurements that does not heavily rely on a detailed model of the accelerator head is presented. The iterative optimization process extracts the characteristics of the particle beams which best explains the reference dose measurements in water and air, given a set of constrains

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is on homonymous distributed systems where processes are prone to crash failures and have no initial knowledge of the system membership (?homonymous? means that several processes may have the same identi?er). New classes of failure detectors suited to these systems are ?rst de?ned. Among them, the classes H? and H? are introduced that are the homonymous counterparts of the classes ? and ?, respectively. (Recall that the pair h?,?i de?nes the weakest failure detector to solve consensus.) Then, the paper shows how H? and H? can be implemented in homonymous systems without membership knowledge (under different synchrony requirements). Finally, two algorithms are presented that use these failure detectors to solve consensus in homonymous asynchronous systems where there is no initial knowledge ofthe membership. One algorithm solves consensus with hH?, H?i, while the other uses only H?, but needs a majority of correct processes. Observe that the systems with unique identi?ers and anonymous systems are extreme cases of homonymous systems from which follows that all these results also apply to these systems. Interestingly, the new failure detector class H? can be implemented with partial synchrony, while the analogous class A? de?ned for anonymous systems can not be implemented (even in synchronous systems). Hence, the paper provides us with the ?rst proof showing that consensus can be solved in anonymous systems with only partial synchrony (and a majority of correct processes).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When non linear physical systems of infinite extent are modelled, such as tunnels and perforations, it is necessary to simulate suitably the solution in the infinite as well as the non linearity. The finite element method (FEM) is a well known procedure for simulating the non linear behavior. However, the treatment of the infinite field with domain truncations is often questionable. On the other hand, the boundary element method (BEM) is suitable to simulate the infinite behavior without truncations. Because of this, by the combination of both methods, suitable use of the advantages of each one may be obtained. Several possibilities of FEM-BEM coupling and their performance in some practical cases are discussed in this paper. Parallelizable coupling algorithms based on domain decomposition are developed and compared with the most traditional coupling methods.