987 resultados para Art objects, Classical.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resolution and classical noise in ghost imaging with a classical thermal light are investigated theoretically. For ghost imaging with a Gaussian Schell model source, the dependences of the resolution and noise on the spatial coherence of the source and the aperture in the imaging system are discussed and demonstrated by using numerical simulations. The results show that an incoherent source and a large aperture will lead to a good image quality and small noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

作为量子信息领域分支的鬼成像,由于物体的像将出现在不包含物体的光路上的特点,使得这一领域的研究引人入胜。一度认为,只有基于纠缠态双光子的纠缠光源,才能实现鬼成像;但近年来的研究表明,经典热光场也能实现这一过程。从经典统计光学入手,建立了热光场的数值模型,模拟符合热光特性的光场变化、光场传播、以及物体透射函数对热光场的调制,进而从光强度起伏的关联函数中,分别重现振幅型物体和纯相位型物体的傅里叶变换图像;通过与真实实验结果的对比,表明基于统计光学原理的该数值模型所预测的实验结果,与真实的实验结果完全一致。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O envelhecimento populacional no Brasil sobreleva a necessidade de organização de serviços de saúde, sendo a estimulação do autocuidado uma estratégia privilegiada para orientar programas de promoção da saúde para pessoas idosas. Face à busca das mais variadas formas de viver bem, abrem-se fronteiras possibilitando o surgimento de modelos de envelhecimento saudável. Partindo do pressuposto de que as pessoas possuem uma dimensão imaginativa no acrescentar qualidade aos anos de vida, delimitou-se como objeto de estudo o imaginário de um grupo da terceira idade na construção das ações de autocuidado. Objetivos: descrever a poética sobre as ações de autocuidado construídas por um grupo de pessoas idosas; e analisar os significados (conceitos/confetos) atribuídos por essas pessoas ao envelhecer. Utilizou-se como marco referencial a Teoria de Promoção da Saúde de Nola Pender. Trata-se de pesquisa descritiva, qualitativa, considerando o paradigma naturalista. Foi aplicado o método sociopoético por meio do dispositivo analítico Grupo Pesquisador, composto por 11 idosos participantes da Unati da Universidade do Estado do Rio de Janeiro, que desenvolveram a investigação no período de outubro a dezembro de 2008, mediante as técnicas de pesquisa: Dinâmica de Corpo como Território Mínimo e a Vivência de Lugares Geomíticos. Foram questões norteadoras do estudo, respectivamente: Como vocês se cuidam para o caminho do bom envelhecer? E Como é o autocuidado para o envelhecer saudável se ele for um lugar geomítico?. Os dados produzidos foram submetidos à análise categorial, dos estudos sociopoéticos. No estudo filosófico, observou-se haver coexistência da autoimagem realista revelando que os idosos estão mais aptos aos desafios da vida, pois seu comportamento é coerente com a ideia que faz de si, além de intenções, aspirações e tendências. O classificatório ressaltou as dicotomias das ações de autocuidado tendo: O Autocuidado através dos Limites e Possibilidades; e Transcender para Experienciar o Dom do Envelhecer; O transversal revelou O Autocuidado como Reconhecimento das Necessidades de Saúde, enquanto no surreal sobrelevam-se Aceitar o Novo para um Renascer Saudável; Perseverança para Conviver com o Envelhecimento; e Procurar Assistência pode Desvelar Temores para a Finitude do Viver. Conclui-se que a compreensão do imaginário dos sujeitos de pesquisa mediada pela teoria de Pender permitiu identificar fatores que influenciam e motivam o autocuidado para comportamentos saudáveis. Assim, o grupo vislumbra para seu futuro uma imagem de envelhecer mais dinâmica, adotando para si próprio um viver mais autônomo, ativo e bem-sucedido. À contribuição do estudo, propõe-se aos enfermeiros a apropriação de conceitos teóricos como forma de traduzir a realidade e demonstrar alternativas viáveis de ações de cuidado/saúde, bem como a utilização das práticas de dinâmicas de criatividade e sensibilidade nas atividades assistenciais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we introduce a new axiom, denoted claims separability, that is satisfied by several classical division rules defined for claims problems. We characterize axiomatically the entire family of division rules that satisfy this new axiom. In addition, employing claims separability, we characterize the minimal overlap rule, given by O'Neill (1982), Piniles rule and the rules in the TAL-family, introduced by Moreno-Ternero and Villar (2006), which includes the uniform gains rule, the uniform losses rule and the Talmud rule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of mechanics, it is a long standing goal to measure quantum behavior in ever larger and more massive objects. It may now seem like an obvious conclusion, but until recently it was not clear whether a macroscopic mechanical resonator -- built up from nearly 1013 atoms -- could be fully described as an ideal quantum harmonic oscillator. With recent advances in the fields of opto- and electro-mechanics, such systems offer a unique advantage in probing the quantum noise properties of macroscopic electrical and mechanical devices, properties that ultimately stem from Heisenberg's uncertainty relations. Given the rapid progress in device capabilities, landmark results of quantum optics are now being extended into the regime of macroscopic mechanics.

The purpose of this dissertation is to describe three experiments -- motional sideband asymmetry, back-action evasion (BAE) detection, and mechanical squeezing -- that are directly related to the topic of measuring quantum noise with mechanical detection. These measurements all share three pertinent features: they explore quantum noise properties in a macroscopic electromechanical device driven by a minimum of two microwave drive tones, hence the title of this work: "Quantum electromechanics with two tone drive".

In the following, we will first introduce a quantum input-output framework that we use to model the electromechanical interaction and capture subtleties related to interpreting different microwave noise detection techniques. Next, we will discuss the fabrication and measurement details that we use to cool and probe these devices with coherent and incoherent microwave drive signals. Having developed our tools for signal modeling and detection, we explore the three-wave mixing interaction between the microwave and mechanical modes, whereby mechanical motion generates motional sidebands corresponding to up-down frequency conversions of microwave photons. Because of quantum vacuum noise, the rates of these processes are expected to be unequal. We will discuss the measurement and interpretation of this asymmetric motional noise in a electromechanical device cooled near the ground state of motion.

Next, we consider an overlapped two tone pump configuration that produces a time-modulated electromechanical interaction. By careful control of this drive field, we report a quantum non-demolition (QND) measurement of a single motional quadrature. Incorporating a second pair of drive tones, we directly measure the measurement back-action associated with both classical and quantum noise of the microwave cavity. Lastly, we slightly modify our drive scheme to generate quantum squeezing in a macroscopic mechanical resonator. Here, we will focus on data analysis techniques that we use to estimate the quadrature occupations. We incorporate Bayesian spectrum fitting and parameter estimation that serve as powerful tools for incorporating many known sources of measurement and fit error that are unavoidable in such work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation is concerned with various fundamental aspects of the linearized dynamical theory for mechanically homogeneous and isotropic elastic solids. First, the uniqueness and reciprocal theorems of dynamic elasticity are extended to unbounded domains with the aid of a generalized energy identity and a lemma on the prolonged quiescence of the far field, which are established for this purpose. Next, the basic singular solutions of elastodynamics are studied and used to generate systematically Love's integral identity for the displacement field, as well as an associated identity for the field of stress. These results, in conjunction with suitably defined Green's functions, are applied to the construction of integral representations for the solution of the first and second boundary-initial value problem. Finally, a uniqueness theorem for dynamic concentrated-load problems is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.

This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.

Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.

It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of plasmonics exploits the unique optical properties of metallic nanostructures to concentrate and manipulate light at subwavelength length scales. Metallic nanostructures get their unique properties from their ability to support surface plasmons– coherent wave-like oscillations of the free electrons at the interface between a conductive and dielectric medium. Recent advancements in the ability to fabricate metallic nanostructures with subwavelength length scales have created new possibilities in technology and research in a broad range of applications.

In the first part of this thesis, we present two investigations of the relationship between the charge state and optical state of plasmonic metal nanoparticles. Using experimental bias-dependent extinction measurements, we derive a potential- dependent dielectric function for Au nanoparticles that accounts for changes in the physical properties due to an applied bias that contribute to the optical extinction. We also present theory and experiment for the reverse effect– the manipulation of the carrier density of Au nanoparticles via controlled optical excitation. This plasmoelectric effect takes advantage of the strong resonant properties of plasmonic materials and the relationship between charge state and optical properties to eluci- date a new avenue for conversion of optical power to electrical potential.

The second topic of this thesis is the non-radiative decay of plasmons to a hot-carrier distribution, and the distribution’s subsequent relaxation. We present first-principles calculations that capture all of the significant microscopic mechanisms underlying surface plasmon decay and predict the initial excited carrier distributions so generated. We also preform ab initio calculations of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We extend these first-principle methods to calculate the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions. Finally, we combine these first-principles calculations of carrier dynamics and optical response to produce a complete theoretical description of ultrafast pump-probe measurements, free of any fitting parameters that are typical in previous analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been known that tunas frequently associate with floating objects, such as trees washed out to sea during periods of heavy rainfall, and fishermen have taken advantage of this behavior to facilitate the capture of fish. In some coastal areas, such as the Philippines, artisanal fishermen construct anchored fish-aggregating devices (FADs) to attract fish. More recently, large numbers of free-floating FADs have been constructed for deployment by large purse seiners on the high seas. The FADs often can be interrogated by the seiner and located at great distances using radio telemetry and/or GPS (Global Positioning System) technologies. In some cases a fleet of fishing vessels has a tender vessel which deploys and maintains the FADs, and notifies the fishing vessels when fish are seen around them. This workshop was convened by the Inter-American Tropical Tuna Commission and sponsored by Bumble Bee Seafoods, Inc., for the purpose of bringing together scientists and fishermen who have studied the association of tunas with floating objects. Special efforts were made to get participants from all the areas in which tunas associated with floating objects are the targets of fisheries. Thus the "regional review papers" include contributions for the eastern Atlantic, the southern Caribbean Sea, the Indian Ocean, and the eastern and western Pacific Oceans. Many of these reviews and other contributed papers are published in this proceedings volume. Other papers discussed in the workshop were published elsewhere; these papers are cited in the list of background documents in the Report of the Workshop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A arte religiosa afro-brasileira resulta da miscigenação das culturas negra, ameríndia e européia através dos séculos. Diversas representações artísticas das divindades afro-brasileiras continuam a ser produzidas mesmo nos dias atuais com inúmeras imagens através de desenhos, objetos rituais, indumentária e esculturas, os quais são fontes de pesquisa artística e etnográfica. A mulher está presente na arte afro-brasileira de uma maneira muito peculiar, principalmente no contexto religioso. Iemanjá, uma divindade feminina, é a Mãe Ancestral e ocupa lugar de destaque no imaginário popular, a orixá do Mar e de todas as águas. É constantemente tema para diversas expressões artísticas e, naturalmente, sua representação e iconografia são intensas e ricas. É importante compreendermos como essa imagem foi sendo construída através do tempo, desde a diáspora africana - sua representação religiosa no Candomblé e na Umbanda, sua imagem associada ao mito das sereias, a influência das iconografia católica até a apropriação de sua imagem por diversos artistas brasileiros como Emanoel Araújo, Jorge dos Anjos, J. Borges, Carybé, Alex Flemming, Rodrigo Cardoso e Nelson Leirner