996 resultados para Arsenic compounds
Resumo:
In this work, the removal of arsenic from aqueous solutions onto thermally processed dolomite is investigated. The dolomite was thermally processed (charred) at temperatures of 600, 700 and 800 degrees C for 1, 2, 4 and 8 h. Isotherm experiments were carried out on these samples over a wide pH range. A complete arsenic removal was achieved over the pH range studied when using the 800 degrees C charred dolomite. However, at this temperature, thermal degradation of the dolomite weakens its structure due to the decomposition of the magnesium carbonate, leading to a partial dissolution. For this reason, the dolomitic sorbent chosen for further investigations was the 8 h at 700 degrees C material. Isotherm studies indicated that the Langmuir model was successful in describing the process to a better extent than the Freundlich model for the As(V) adsorption on the selected charred dolomite. However, for the As(III) adsorption, the Freundlich model was more successful in describing the process. The maximum adsorption capacities of charred dolomite for arsenite and arsenate ions are 1.846 and 2.157 mg/g, respectively. It was found that both the pseudo first- and second-order kinetic models are able to describe the experimental data (R-2 > 0.980). The data suggest the charring process allows dissociation of the dolomite to calcium carbonate and magnesium oxide, which accelerates the process of arsenic oxide and arsenic carbonate precipitation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Background: Tobacco smoke is a major risk to the health of its users and arsenic is among the components of smoke present at concentrations of toxicological concern. There are significant variations in human toxicity between inorganic and organic arsenic species and the aim of this study was to determine whether there are predictable relationships among major arsenic species in tobacco that could be useful for risk assessment.
Methods: 14 samples of tobacco were studied spanning a wide range of concentrations in samples from different geographical regions, including certified reference materials and cigarette products. Inorganic and major organic arsenic species were extracted from powdered tobacco samples by nitric acid using microwave digestion. Concentrations of arsenic species in these extracts were determined using HPLC-ICPMS.
Results: The concentrations of total inorganic arsenic species range from 144 to 3914 mu g kg(-1), while organic species dimethylarsinic acid (DMA) ranges from 21 to 176 mu g As kg(-1), and monomethylarsonic acid (MA) ranges from 30 to 116 mu g kg(-1). The percentage of species eluted compared to the total arsenic extracted ranges from 11.1 to 36.8% suggesting that some As species (possibly macro-molecules, strongly complexed or in organic forms) do not elute from the column. This low percentage of column-speciated arsenic is indicative that more complex forms of arsenic exist in the tobacco. All the analysed species correlate positively with total arsenic concentration over the whole compositional range and regression analysis indicates a consistent ratio of about 4:1 in favour of inorganic arsenic compared with MA + DMA.
Conclusions: The dominance of inorganic arsenic species among those components analysed is a marked feature of the diverse range of tobaccos selected for study. Such consistency is important in the context of a WHO expert panel recommendation to regulate tobacco crops and products using total arsenic concentration. If implemented more research would be required to develop models that accurately predict the smoker's exposure to reduced inorganic arsenic species on the basis of leaf or product concentration and product design features.
Resumo:
Previous studies have demonstrated that rice cultivated under flooded conditions has higher concentrations of arsenic (As) but lower cadmium (Cd) compared to rice grown in unsaturated soils. To validate such effects over long terms under Mediterranean conditions a field experiment, conducted over 7 successive years was established in SW Spain. The impact of water management on rice production and grain arsenic (As) and cadmium (Cd) was measured, and As speciation was determined to inform toxicity evaluation. Sprinkler irrigation was compared to traditional flooding.
Both irrigation techniques resulted in similar grain yields (similar to 3000 kg grain ha(-1)). Successive sprinkler irrigation over 7 years decreased grain total As to one-sixth its initial concentration in the flooded system (0.55 to 0.09 mg As kg(-1)), while one cycle of sprinkler irrigation also reduced grain total As by one-third (0.20 mg kg(-1)). Grain inorganic As concentration increased up to 2 folds under flooded conditions compared to sprinkler irrigated fields while organic As was also lower in sprinkler system treatments, but to a lesser extent. This suggests that methylation is favored under water logging. However, sprinkler irrigation increased Cd transfer to grain by a factor of 10, reaching 0.05 mg Cd kg(-1) in 7 years. Sprinlder systems in paddy fields seem particularly suited for Mediterranean climates and are able to mitigate against excessive As accumulation, but our evidence shows that an increased Cd load in rice grain may result.
Resumo:
The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of,300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel). This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.
Resumo:
A field and market basket study (similar to 1300 samples) of locally grown fruits and vegetables from historically mined regions of southwest (SW) England (Cornwall and Devon), and as reference, a market basket study of similarly locally grown produce from the northeast (NE) of Scotland (Aberdeenshire) was conducted to determine the concentration of total and inorganic arsenic present in produce from these two geogenically different areas of the U.K. On average 98.5% of the total arsenic found was present in the inorganic form. For both the market basket and the field survey, the highest total arsenic was present in open leaf structure produce (i.e., kale, chard, lettuce, greens, and spinach) being most likely to soil/dust contamination of the open leaf structure. The concentration of total arsenic in potatoes, swedes, and carrots was lower in peeled produce compared to unpeeled produce. For baked potatoes, the concentration of total arsenic in the skin was higher compared to the total arsenic concentration of the potato flesh, this difference in localization being confirmed by laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS). For all above ground produce (e.g., apples), peeling did not have a significant effect on the concentration of total arsenic present.
Resumo:
Rice is a major source of inorganic arsenic (iAs) in the human diet because paddy rice. efficient at accumulating As Rice As speciation is dominated by iAs and dimethylarsinic acid (DMA). Here we review the global pattern in rice As speciation and the factors causing the variation. Rice produced in Asia shows a strong linear relationship between iAs and total As concentration with a slope of 0.78. Rice produced in Europe and the United States shows a more variable, but generally hyperbolic relationship with DMA being predominant in U.S. rice. Although there is significant genotypic variation in grain As speciation, the regional Variations are primarily attributed to environmental factors. Emerging evidence also indicates that methylated. As species in rice are derived from the soil, while rice plants lack the As methylation ability. Soil flooding and additions of organic matter increase microbial methylation of As, although the microbial community responsible for methylafion is poorly understood. Compared with iAs, methylated As species are taken up by rice roots less efficiently but are transported to the grain much, more efficiently, which may be an important factor responsible for the spikelet sterility disorder (straight head disease) in rice. DMA is a weak carcinogen, but the level of ingestion from rice consumption is much lower than that of concern. Questions that require further investigations are identified.
Resumo:
It has previously been reported that rice grown in regions of Bangladesh with low-arsenic (As) concentrations in irrigation water can have relatively high concentrations of As within their grains. This study aims to determine how widespread this issue is, and determine the seasonal variation in grain As in these regions. Levels of As were measured in shallow tube well (STW) water, soils, and rice grains collected during the Boro (dry) and Aman (wet) seasons from six Upazilas (sub-districts) of Bangladesh where As levels in groundwater were known to be low. In all the Upazilas, the As concentrations in STW water were <50 mu g L-1. The As levels in soil samples collected from the Upazilas ranged between 0.2-4.0 mgkg(-1) in the sam-ples collected during the Boro season, and 0.4-5.7 mg kg(-1) in the samples collected in the Aman season. Levels of As in both Boro and Aman rice grain varied widely: in Boro 0.02-0.45 mg kg(-1), and in Aman 0.01-0.29 mg kg(-1). Additionally, a household survey of dietary habits was also conducted in one Upazila by estimating As ingestion by 15 head female members. On average, the women consumed 3.1 L of water, 1.1 kg of cooked rice, and 42 g dry weight of curry per day. The total As ingestion rates ranged from 31.1-129.3 mu g day(-1) (mean 63.5 mu g kg(-1)). These findings indicate that the major route of As ingestion in low groundwater As areas of Bangladesh is rice, followed by curry and then water.
Resumo:
Hydrogeochemical relationships and the level of arsenic (As) contamination of groundwater in the Haor Basin, a low-lying, semi-natural, region of remnant wetland environs to the northeast of Bangladesh, were studied to assess the As biogeochemical cycling. Most of the shallow and deep tubewells in the study area are contaminated with As (2-331 mu g/l). The relatively higher proportions of Na+ (8-156 mg/l) in groundwater suggest a mixing of connate marine water with freshwater aquifer. Non-significant association between As and PO43- has been found. Highly significant (P <0.001) relationship of As with DOC in groundwater indicates biodegradation of organic matter, creating an overall reducing environment in the aquifer sediments, which facilitates the release of As in the groundwater. The inverse As-Fe, As-Mn, As-Ca and As-Mg relationships in groundwater could be related to the precipitation of Fe-, Mn-, Ca-and Mg-minerals.
Resumo:
The levels of As and various other trace elements found in the irrigated agricultural soil (Tsoil) of southern Libya were compared with non-irrigated soil (Csoil) from the same sampling campaign collected between April and May 2008. The soil samples represented agronomic practice in the southern Libyan regions of Maknwessa (MAK), Aril (ARL) and Taswaa (TAS), and were analyzed by Inductively coupled plasma mass spectrometry (ICP-MS) for Co, Ni, Cu, Se, Mo, Zn, As, Pb, Cd and P. Concentrations of P and As in TAS and MAK were found to be higher in Tsoil compared to Csoil, while the opposite was true for ARL. In general, As concentrations in these areas were 2-3 times lower than the global average. In ARL, the average P concentrations of the Csoil samples were significantly higher than those of Tsoil samples: this site is composed mainly of pasture for animal production, where phosphate fertilizers are used regularly. Distance from the source of irrigation was found to be of an important influence on the heavy metal concentration of the soil, with greater concentrations found closer to the irrigation source. It can be concluded from the results that irrigation water contains elevated levels of As, which finds its way into the soil profile and can lead to accumulation of As in the soil over time.
Resumo:
Elements in grain crops such as iron, zinc and selenium are essential in the human diet, whereas elements such as arsenic are potentially toxic to humans. This study aims to identify quantitative trait loci (QTLs) for trace elements in rice grain. A field experiment was conducted in an arsenic enriched field site in Qiyang, China using the Bala x Azucena mapping population grown under standard field conditions. Grains were subjected to elemental analysis by inductively coupled plasma mass spectroscopy. QTLs were detected for the elemental composition within the rice grains, including for iron and selenium, which have previously been detected in this population grown at another location, indicating the stability of these QTLs. A correlation was observed between flowering time and a number of the element concentrations in grains, which was also revealed as co-localisation between flowering time QTLs and grain element QTLs. Unravelling the environmental conditions that influence the grain ionome appears to be complex, but from the results in this study one of the major factors which controls the accumulation of elements within the grain is flowering time.
Resumo:
Goats’ milk is responsible for unique traditional products such as Halloumi cheese. The characteristics of Halloumi depend on the original features of the milk and on the conditions under which the milk has been produced such as feeding regime of the animals or region of production. Using a range of milk (33) and Halloumi (33) samples collected over a year from three different locations in Cyprus (A, Anogyra; K, Kofinou; P, Paphos), the potential for fingerprint VOC analysis as marker to authenticate Halloumi was investigated. This unique set up consists of an in-injector thermo desorption (VOCtrap needle) and a chromatofocusing system based on mass spectrometry (VOCscanner). The mass spectra of all the analyzed samples are treated by multivariate analysis (Principle component analysis and Discriminant functions analysis). Results showed that the highland area of product (P) is clearly identified in milks produced (discriminant score 67%). It is interesting to note that the higher similitude found on milks from regions “A” and “K” (with P being distractive; discriminant score 80%) are not ‘carried over’ on the cheeses (higher similitude between regions “A” and “P”, with “K” distinctive). Data have been broken down into three seasons. Similarly, the seasonality differences observed in different milks are not necessarily reported on the produced cheeses. This is expected due to the different VOC signatures developed in cheeses as part of the numerous biochemical changes during its elaboration compared to milk. VOC however it is an additional analytical tool that can aid in the identification of region origin in dairy products.
Resumo:
Virgin olive oil is a high quality natural product obtained only by physical means. In addition to triacylglycerols it contains nutritionally important polar and non-polar antioxidant phenols and other bioactive ingredients. The polar fraction is a complex mixture of phenolic acids, simple phenols, derivatives of the glycosides oleuropein and ligstroside, lignans, and flavonoids. These compounds contribute significantly to the stability, flavor, and biological value of virgin olive. In the various stages of production, during storage and in the culinary uses, polar phenols and other valuable bioactive ingredients may be damaged. Oxidation, photo-oxidation, enzymic hydrolysis and heating at frying temperatures have a serious adverse effect. Due to the biological importance of the oil and its unique character, analytical methods have been developed to evaluate antioxidant activity or analyse complex phenol mixtures. These are based on radical scavenging assays and chromatographic techniques. Hyphenated methods are also used including liquid chromatography-mass spectrometry and liquid chromatography-nuclear magnetic resonance spectroscopy.
Resumo:
Ethnopharmacological relevance
The two plants investigated here (Fagonia cretica L. and Hedera nepalensis K. Koch) have been previously reported as natural folk medicines for the treatment of diabetes but until now no scientific investigation of potential anti-diabetic effects has been reported.
Materials and methods
In vitro inhibitory effect of the two tested plants and their five isolated compounds on the dipeptidyl peptidase 4 (DPP-4) was studied for the assessment of anti-diabetic activity.
Results
A crude extract of Fagonia cretica possessed good inhibitory activity (IC50value: 38.1 μg/ml) which was also present in its n-hexane (FCN), ethyl acetate (FCE) or aqueous (FCA) fractions. A crude extract of Hedera nepalensis (HNC) possessed even higher inhibitory activity (IC50value: 17.2 μg/ml) and this activity was largely retained when further fractionated in either ethyl acetate (HNE; IC50: 34.4 μg/ml) or n-hexane (HNN; 34.2 μg/ml). Bioactivity guided isolation led to the identification of four known compounds (isolated for the first time) from Fagonia cretica: quinovic acid (1), quinovic acid-3β-O-β-d-glycopyranoside (2), quinovic acid-3β-O-β-d-glucopyranosyl-(28→1)-β-d-glucopyranosyl ester (3), and stigmasterol (4) all of which inhibited DPP-4 activity (IC50: 30.7, 57.9, 23.5 and >100 μM, respectively). The fifth DPP-4 inhibitor, the triterpenoid lupeol (5) was identified in Hedera nepalensis (IC50: 31.6 μM).
Conclusion
The experimental study revealed that Fagonia cretica and Hedera nepalensis contain compounds with significant DPP-4 inhibitory activity which should be further investigated for their anti-diabetic potential.
Resumo:
Photoexcited electrochemically generated quinone radical anions reduced 1,2-dibromobenzene to bromobenzene, 1,4-dibromobenzene to bromobenzene and 4-chlorobenzonitrile to benzonitrile. In the presence of anthracene, 2-bromophenyl-, 4-bromophenyl- and 4-cyanophenyl-anthracenes were formed. With acetaldehyde, acetone, acetophenone, benzaldehyde and benzophenone, the major products were the corresponding pinacols, with small amounts of the two-electron secondary alcohols. In acetonitrile as solvent, cinnamonitriles, hydrocinnamonitriles and phenylglutaronitriles were formed in addition to the alcohols. Glyoxylic acid was reduced to tartaric, glycolic and malic acids. The reduction of CO2 was unsuccessful.
Resumo:
The recent commissioning of a X-ray free-electron laser triggered an extensive research in the area of X-ray ablation of high-Z, high-density materials. Such compounds should be used to shorten an effective attenuation length for obtaining clean ablation imprints required for the focused beam analysis. Compounds of lead (Z=82) represent the materials of first choice. In this contribution, single-shot ablation thresholds are reported for PbWO4 and PbI2 exposed to ultra-short pulses of extreme ultraviolet radiation and X-rays at FLASH and LCLS facilities, respectively. Interestingly, the threshold reaches only 0.11 J/cm(2) at 1.55 nm in lead tungstate although a value of 0.4 J/cm(2) is expected according to the wavelength dependence of an attenuation length and the threshold value determined in the XUV spectral region, i.e., 79 mJ/cm(2) at a FEL wavelength of 13.5 nm. Mechanisms of ablation processes are discussed to explain this discrepancy. Lead iodide shows at 1.55 nm significantly lower ablation threshold than tungstate although an attenuation length of the radiation is in both materials quite the same. Lower thermal and radiation stability of PbI2 is responsible for this finding.