976 resultados para Aromatic ketone
Resumo:
N-halosaccharins proved to be useful and alternative reagents for diverse organic transformations, such as halogenation of aromatic compounds, benzylic and alpha-carbonylic positions, cohalogenation of alkenes, oxidation of secondary alcohols, etc. Their preparation from saccharin, a cheap and readly available starting material, is simple.
Resumo:
In this work, seven samples of humic acids extracted from gleysoils were investigated. These studies, using NMR CP/MAS 13C techniques, did not show significant correlation between the E4/E6 ratio and the degree of aromaticity. However, dipolar dephasing (DD) measurements of condensed aromatic or substituted carbons showed a negative correlation of 0.94. Also, there was a good correlation between the amount of semiquinone free radicals measured by the EPR technique and condensed aromatic rings measured by NMR CP/MAS 13C with the DD technique. The content of semiquinone free radicals was quantified by EPR spectroscopy and was correlated with the humification (degree of aromaticity) of the humic substances. The results indicated that the E4/E6 ratio identifies the degree of aromatic rings condensation. It was also found that the degree of aromaticity, measured by NMR, as frequently presented in the literature (by conventional CP/MAS), underestimates aromatic rings in condensed structures.
Resumo:
Experimental procedures based on factorial design and surface response methodology were applied to establishe experimental conditions for the decomposition of a 1:400 (v/v) Supocade® (chlorfenvinphos 13.8% and cypermethrin 2.6%) solution, used to control cattle ticks. Experiments exploring photo-oxidative reactions were performed with and without UV radiation, fixing exposition time and pesticide volume, and varying the oxidant mixture. The use of 3.6 mmol L-1 Fe2+ plus 1.9 mol L-1 H2O2 plus UV radiation provided destruction of 94% of the original carbon content and reduction of aromatic, aliphatic and carbinolic compounds, evaluated by determination of residual carbon content by ICP OES and NMR analysis.
Resumo:
1,2-dichloro-4,5-dinitrobenzene (DCDNB) reacts with primary and secondary amines, in acetonitrile, at room temperature, to give a monosubstituted nitro product with a yield of 85 to 95%. The chloro-nitro-disubstituted product is formed with excess amine under reflux. Piperidine, pyrroline, dimethylamine and methylamine were the most reactive reagents in both mono- and disubstitution.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are a great environmental concern mainly because of their toxic, mutagenic and carcinogenic potential. This paper reports utilization of the solid-phase extraction (SPE) technique to determine PAHs in environmental aqueous matrices. The recovery from environmental aqueous matrices fortified with PAHs varied from 63.7 to 93.1% for atmospheric liquid precipitation, from 38.3 to 95.1% for superficial river water, and from 71.0 to 95.5% for marine water. No negative matrix effect was observed for the recovery of PAHs from atmospheric liquid precipitation and marine water, but was observed for superficial river water, particularly for PAHs possessing 5 and 6 aromatic rings.
Resumo:
The present article presents an assessment of PTS in Brazil including polychlorinated biphenyls, polycyclic aromatic hydrocarbons, benzene hexachloride, aldrin, dieldrin, endrin, p,p,-DDT, p,p,DDE, p,p,-DDD, hexachlorocyclohexanes (alpha-HCH, beta-HCH, gamma-HCH and delta-HCH), endossulfan, heptachlor and pentachlorophenol. The data presented here are related to a survey of PTS levels in different environmental matrixes (soil, sediment, water, air, biota) and human tissues (milk, blood, human hair), according to the scope of the UNEP-GEF Regionally Based Assessment of PTSs. Potential sources were evaluated considering national products and imports, since most of the literature does not allow source identification. Finally, Brazilian legislation was updated.
Resumo:
Silica gel was chemically modified with the aromatic amines p-anisidine, p-phenytidine and p-phenylenediamine, using grafting reactions. The resulting modified silicas were characterized by infrared spectroscopy and N2 adsorption/desorption isotherms. The organic groups were covalently immobilized in a monolayer form. These modified silicas were investigated as adsorbents for Pb2+, Cu2+, Cd2+ and Ni2+ in aqueous and ethanol solutions. In a general way, the adsorption capacity values for all adsorbents presented the following sequence: Pb2+ >> Cu2+ @Cd2+ @ Ni2+. Adsorption studies for all adsorbents, in competitive medium, showed better selectivity for Cu2+ and Pb2+ in aqueous medium and for Pb2+ in ethanol solution. Desorption studies were carried out using HCl and HNO3 as eluents.
Resumo:
This paper describes the procedures for analysing pollutant gases emitted by engines, such as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) by using high resolution gas chromatography (HRGC). For IC engine burning, in a broad sense, the use of the B10 mixture reduces drastically the emissions of aromatic compounds. Especially for benzene the reduction of concentrations occurs at the level of about 24.5%. Although a concentration value below 1 µg mL-1 has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound.
Resumo:
Croton nepetaefolius is an aromatic plant native to the northeast of Brazil where it is extensively used in folk medicine as a sedative, orexigen and antispasmodic agent. The present work deals with the chromatographic analysis of the ethanolic extract of Croton nepetaefolius stalk. It allowed the isolation and characterization of two diterpenoids named 1,4-dihydroxy-2E,6E,12E-trien-5-one-casbane and 4-hydroxy-2E,6E,12E-5-one-casbane, two acetophenones named 2-hydroxy-4,6-dimethoxyacetophenone and 2-hydroxy-3,4,6-trimethoxyacetophenone and the steroids 3-O-b-D-glucopiranosylsitosterol and a mixture of b-sitosterol and stigmasterol. Structural elucidation was done on the basis of spectral data, mainly high field NMR and EIMS.
Resumo:
The chlorination of activated aromatic rings is efficiently achieved under mild conditions by reaction of aromatic compounds with trichloroisocyanuric acid in acetonitrile, at room temperature, leading to products in 60-95% isolated yields and good regioselectivity.
Resumo:
Chemical investigation of the dichloromethane/methanol extract of the marine alga Bostrychia tenella has led to the isolation of two aromatic compounds, the new sulfate metabolite potassium 4-(hydroxymethyl)-benzenosulfonate (1) and the compound 1-methoxyphenethyl alcohol (2), described previously as a synthetic product. Their structures were determined by spectroscopic methods including NMR, MS, IR and by comparison with literature data.
Resumo:
This work presents three operationally simple laboratory protocols for monocrystal growth of small-molecule organic compounds, which have been applied with success in the last ten years for the formation of single crystals for X-ray structural studies. In addition, five structure hints were formulated as general guidelines for selecting a small-molecule organic compound as a candidate for monocrystal growth: molecular weight >200 D, melting point >100 ºC, two or more aromatic rings in the structure, at least two sites for intermolecular hydrogen bond formation, and a halogen or other heavy atom in the structure.
Resumo:
The objective of this work was to evaluate the environmental distribution of benzo(a)pirene, a polycyclic aromatic hydrocarbon, by the EQC model. The modeling of the contaminant distribution was accomplished by means of the fugacity model applied to a hypothetical scenario constituted by air, water, soil and sediment. The modeling and simulations revealed that the soil is the preferential compartment. We also discuss the implications of the results about fate and ecological risks associated with benzo(a)pirene. We concluded that the emissions of HPAs can not be ignored and bioaccumulation among others risks can be induced.
Resumo:
The aim of this paper is to study the family of halobenzenes for characterizing their intrinsic reactivity and in this way to establish a rational order of the intrinsic reactivity of this family of molecules in the electrophilic aromatic substitution. This study was carried out in the framework of Density Functional Theory which provides a global and local index that can be used in the characterization of the reactivity. This index is related to some concept derivatives of experimental chemistry, being a good approach to the characterization of halobenzenes.
Resumo:
Traditional biomarker parameters and aromatic compounds were applied to characterize and classify ten Cuban asphaltites (asphaltene-rich petroleum occurring as seeps or filling veins, joints, cavities and fissures). Genetic molecular parameters were compared in order to establish oil-oil correlations between samples. Thermal evolution was investigated using saturated biomarker and aromatic maturity parameters. All samples seem to represent petroleum in the early catagenetic stage. Statistical procedures used as auxiliary techniques show that they represent oils of Family II (marine anoxic carbonate sourced oils), except for 2 samples interpreted as belonging to Family III oils (normal marine siliciclastic suboxic sourced oils).