987 resultados para Aqueous DMSO Solvent


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABSs) have been investigated as tunable reaction media, in the example presented here, to control the oxidation of cyclohexene to adipic acid with hydrogen peroxide. The production of adipic acid was found to increase from the monophasic to the biphasic regimes, was greatest at short tie-line lengths (close to the system's critical point), and demonstrates how control of the ABS media, through changes in system composition, PEG, salt, and tie-line length, can be used to readily tune and control reactivity and product isolation in these aqueous biphasic reactive extraction systems. Challenges in using this system, including possible oxidation reactions of the PEG-OH end groups, are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-soluble, stable, and easily synthesizable 1:4 complexes of rare-earth ions with 8-hydroxy-5-nitroquinolinate ligands have been prepared. These complexes can be sensitized by visible light with wavelengths up to 480 nm and show near-infrared emission in aqueous solution. The incorporation of a nitro group in the quinoline moiety shifts its absorption bands to longer wavelengths and also increases its molar absorptivity by a factor of 2.5, thereby significantly enhancing its light-harvesting power. The presence of the nitro group also increases the solubility of the resulting complexes, making them water-soluble. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In vitro release testing of vaginal formulations is usually performed in a one-compartment model (OCM) where the release medium, usually comprising pH-adjusted water, an aqueous surfactant solution or a solvent-water solution, provides sink conditions throughout the release experiment. Although this model is useful in evaluating the effect of formulation parameters upon release, it rarely reflects in vivo conditions. Here we report use of a two-compartment diffusion cell model (TCM, comprising a small volume donor, a large volume receptor, and separated by a model epithelial membrane) to more closely mimic in vivo vaginal release and tissue absorption following administration of a UC781 vaginal ring.

METHODS: Macaque-sized matrix silicone elastomer vaginal rings containing 100mg UC781 were prepared by injection molding, and in vitro release testing performed using both OCM (20mL simulated vaginal fluid, SVF) and TCM (5mL SVF in donor cell and variable quantities of Tween 80; silicone elastomer membrane; 100mL 3:2 ethanol/water in receptor cell). In the TCM, drug levels were measured by HPLC in both donor and receptor cells, representing fluid and tissue levels respectively. Rings containing 100mg UC781 and 10% w/w Tween 80 were also manufactured and tested.

RESULTS: The amount of UC781 released from rings was significantly influenced by the choice of release model. Greatest release (56mg/14 days) was measured in the ethanol/water OCM, compared with no measurable release into SVF only. Increasing the concentration of Tween 80 in the SVF medium (1, 3 and 5% w/w) led to increased UC781 release (11, 16 and 18mg, respectively), demonstrating that vaginal fluid solubility of UC781 may be rate-determining in vivo. In the TCM, UC781 accumulates in the receptor cell medium over time, despite not being measured in the donor medium containing the ring device. Incorporation of Tween 80 directly into the ring provided enhanced release in both donor and receptor cells.

CONCLUSIONS: Release of UC781 was influenced by the choice of release medium and the inclusion of Tween 80 in the ring. Although use of SVF-only in the OCM indicated no measurable UC781 release from rings, data from the TCM confirms that UC781 is not only released but is also capable of penetrating across the model epithelial membrane. The TCM may therefore provide a more representative in vitro release model for mimicking in vivo absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A potential usefulness of raw date pits as an inexpensive solid adsorbent for methylene blue (MB), copper ion (Cu2+), and cadmium ion (Cd2+) has been demonstrated in this work. This work was conducted to provide fundamental information from the study of equilibrium adsorption isotherms and to investigate the adsorption mechanisms in the adsorption of MB, Cu2+, and Cd2+ onto raw date pits. The fit of two models, namely Langmuir and Freundlich models, to experimental data obtained from the adsorption isotherms was checked. The adsorption capacities of the raw date pits towards MB and both Cu2+ and Cd2+ ions obtained from Langmuir and Freundlich models were found to be 277.8, 35.9, and 39.5 mg g(-1), respectively. Surface functional groups on the raw date pits surface substantially influence the adsorption characteristics of MB, Cu2+, and Cd2+ onto the raw date pits. The Fourier transform infrared spectroscopy (FTIR) studies show clear differences in both absorbances and shapes of the bands and in their locations before and after solute adsorption. Two mechanisms were observed for MB adsorption, hydrogen bonding and electrostatic attraction, while other mechanisms were observed for Cu2+ and Cd2+. For Cu2+, binding two cellulose/lignin units together is the predominant mechanism. For Cd2+. the predominant mechanism is by binding itself using two hydroxyl groups in the cellulose/lignin unit. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of a water-soluble, thermo-responsive polymer as a highly sensitive fluorescence-lifetime probe of microfluidic temperature is demonstrated. The fluorescence lifetime of poly(N-isopropylacrylamide) labelled with a benzofurazan fluorophore is shown to have a steep dependence on temperature around the polymer phase transition and the photophysical origin of this response is established. The use of this unusual fluorescent probe in conjunction with fluorescence lifetime imaging microscopy (FLIM) enables the spatial variation of temperature in a microfluidic device to be mapped, on the micron scale, with a resolution of less than 0.1 degrees C. This represents an increase in temperature resolution of an order of magnitude over that achieved previously by FLIM of temperature-sensitive dyes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise control over the interfacial area of aqueous and organic slugs in segmented flow in a microchannel reactor provides an attractive means to optimize the yield and productivity of a phase-transfer-catalyzed reaction. Herein, we report the selective alkylation of phenylacetonitrile to the monoalkylated product in a microchannel of 250-mu m internal diameter operated in a continuous and solvent-free manner in the slug-flow regime. The conversion of phenylacetonitrile increased from 40% to 99% as a result of a 97% larger slug surface-to-volume ratio when the volumetric aqueous-to-organic phase flow ratio was raised from 1.0 to 6.1 at the same residence time. The larger surface-to-volume ratio significantly promoted catalyst phase transfer but decreased selectivity because of the simultaneous increase of the rate of the consecutive reaction to the dialkylated product. There exists all Optimum flow ratio with a maximum productivity. Conversion and selectivity in the microchannel reactor were both found to be significantly larger than in a stirred reactor.