885 resultados para Antibiotic prescription
Resumo:
The reported incidence of human campylobacteriosis in Finland is higher than in most other European countries. A high annual percentage of sporadic infections is of foreign origin, although a notable proportion of summer infections is domestically acquired. While chickens appear to be a major source of campylobacters for humans in most countries, the prevalence of campylobacters is very low in chicken slaughter batches in Finland. Data on other potential animal reservoirs of human pathogenic campylobacters in Finland are scarce. Consequently, this study aimed to investigate the status of Finnish cattle as a potential source of thermophilic Campylobacter spp. and antibiotic-resistant Campylobacter jejuni for human sporadic campylobacter infections of domestic origin. A survey of the prevalence of thermophilic Campylobacter spp. in Finnish cattle studied bovine rectal faecal samples (n=952) and carcass surface samples (n=948) from twelve Finnish slaughterhouses from January to December 2003. The total prevalence of Campylobacter spp. in faecal samples was 31.1%, and in carcass samples 3.5%. Campylobacter jejuni, the most common species, was present in 19.5% of faecal samples and in 3.1% of carcasses. In addition to thermophilic Campylobacter spp., C. hyointestinalis ssp. hyointestinalis was present in bovine samples. The prevalence of campylobacters was higher among beef cattle than among dairy cattle. Using the enrichment method, the number of positive faecal samples was 7.5 times higher than that obtained by direct plating. The predominant serotypes of faecal C. jejuni, determined by serotyping with a set of 25 commercial antisera for heat-stable antigens (Penner), were Pen2 and Pen4-complex, which covered 52% of the samples. Genotyping with pulsed-field gel electrophoresis (PFGE) using SmaI restriction yielded a high diversity of C. jejuni subtypes in cattle. Determining the minimum inhibitory concentrations of ampicillin, enrofloxacin, erythromycin, gentamicin, nalidixic acid, and oxytetracycline among bovine C. jejuni isolates using a commercial broth microdilution method yielded 9% of isolates resistant to at least one of the antimicrobials examined. No multiresistant isolates were found among the bovine C. jejuni strains. The study of the shedding patterns of Campylobacter spp. among three Finnish dairy cattle herds included the examination of fresh faecal samples and tank milk samples taken five times, as well as samples from drinking troughs taken once during the one-year study. The semiquantitative enrichment method detected C. jejuni in 169 of the 340 faecal samples, mostly at low levels. In addition, C. jejuni was present in one drinking trough sample. The prevalence between herds and sampling occasions varied widely. PFGE, using SmaI as restriction enzyme, identified only a few subtypes in each herd. In two 2 of the herds, two subtypes persisted throughout the sampling. Individual animals presented various shedding patterns during the study. Comparison of C. jejuni isolates from humans, chickens and cattle included the design of primers for four new genetic markers selected from completely sequenced C. jejuni genomes 81-176, RM1221 and NCTC 11168, and the PCR examination of domestic human isolates from southern Finland in 1996, 2002 and 2003 (n=309), chicken isolates from 2003, 2006 and 2007 (n=205), and bovine isolates from 2003 (n=131). The results revealed that bovine isolates differed significantly from human and chicken isolates. In particular, the - glutamyl transpeptidase gene was uncommon among bovine isolates. The PFGE genotyping of C. jejuni isolates, using SmaI and KpnI restriction enzymes, included a geographically representative collection of isolates from domestic sporadic human infections, chicken slaughter batches, and cattle faeces and carcasses during the seasonal peak of campylobacteriosis in the summer of 2003. The study determined that 55.4% of human isolates were indistinguishable from those of chickens and cattle. Temporal association between isolates from humans and chickens was possible in 31.4% of human infections. Approximately 19% of the human infections may have been associated with cattle. However, isolates from bovine carcasses and human cases represented different PFGE subtypes. In conclusion, this study suggests that Finnish cattle is a notable reservoir of C. jejuni, the most important Campylobacter sp. in human enteric infections. Although the concentration of these organisms in bovine faeces appeared to be low, excretion can be persistent. The genetic diversity and presence or absence of marker genes support previous suggestions of host-adapted C. jejuni strains, and may indicate variations in virulence between strains from different hosts. In addition to chickens, Finnish cattle appeared to be an important reservoir and possible source of C. jejuni in domestic sporadic human infections. However, sources of campylobacters may differ between rural and urban areas in Finland, and in general, the transmission of C. jejuni of bovine origin probably occurs via other routes than food.
Resumo:
Bacillus subtilis BacB is an oxidase that is involved in the production of the antibiotic bacilysin. This protein contains two double-stranded beta-helix (cupin) domains fused in a compact arrangement. BacB crystallizes in three crystal forms under similar crystallization conditions. An interesting observation was that a slight perturbation of the crystallization droplet resulted in the nucleation of a different crystal form. An X-ray absorption scan of BacB suggested the presence of cobalt and iron in the crystal. Here, a comparative analysis of the different crystal forms of BacB is presented in an effort to identify the basis for the different lattices. It is noted that metal ions mediating interactions across the asymmetric unit dominate the different packing arrangements. Furthermore, a normalized B-factor analysis of all the crystal structures suggests that the solvent-exposed metal ions decrease the flexibility of a loop segment, perhaps influencing the choice of crystal form. The residues coordinating the surface metal ion are similar in the triclinic and monoclinic crystal forms. The coordinating ligands for the corresponding metal ion in the tetragonal crystal form are different, leading to a tighter packing arrangement. Although BacB is a monomer in solution, a dimer of BacB serves as a template on which higher order symmetrical arrangements are formed. The different crystal forms of BacB thus provide experimental evidence for metal-ion-mediated lattice formation and crystal packing.
Resumo:
Penicillin binding proteins (PBPs) are membrane-associated proteins that catalyze the final step of murein biosynthesis. These proteins function as either transpeptidases or carboxypeptidases and in a few cases demonstrate transglycosylase activity. Both transpeptidase and carboxypeptidase activities of PBPs occur at the D-Ala-D-Ala terminus of a murein precursor containing a disaccharide pentapeptide comprising N-acetyl-glucosamine and N-acetyl-muramic acid-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala. beta-Lactam antibiotics inhibit these enzymes by competing with the pentapeptide precursor for binding to the active site of the enzyme. Here we describe the crystal structure, biochemical characteristics, and expression profile of PBP4, a low-molecular-mass PBP from Staphylococcus aureus strain COL. The crystal structures of PBP4-antibiotic complexes reported here were determined by molecular replacement, using the atomic coordinates deposited by the New York Structural Genomics Consortium. While the pbp4 gene is not essential for the viability of S. aureus, the knockout phenotype of this gene is characterized by a marked reduction in cross-linked muropeptide and increased vancomycin resistance. Unlike other PBPs, we note that expression of PBP4 was not substantially altered under different experimental conditions, nor did it change across representative hospital- or community-associated strains of S. aureus that were examined. In vitro data on purified recombinant S. aureus PBP4 suggest that it is a beta-lactamase and is not trapped as an acyl intermediate with beta-lactam antibiotics. Put together, the expression analysis and biochemical features of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.
Resumo:
A one pot synthesis of 6-alkylsalicylates and 6-alkyl-2,4- dihydroxybenzoates is described. Cycloaddition of 1-methoxycyclohexa-1,4- or 1,3-dienes with alkylpropiolic esters results in the regio-specific formation of 2-alkyl-6-methoxybenzoates. Thus, methyl 2-methoxy-6-methyl benzoate, methyl 2,4-dimethoxy-6-methylbenzoate, methyl 2,5-dimethoxy-6-methylbenzoate, methyl 2-methoxy-4,6-dimethylbenzoate, and ethyl 2-butyl-4,6-dimethoxybenzoate, have been prepared. By making use of this method, the synthesis of two dihydroisocoumarins namely (±)-mellein (12) and (±)-6-methoxy- mellein (14) is described. Employing a similar strategy, a novel route to 2,5-dialkylresorcinols has been developed. Stemphol (24b) and the antibiotic DB2073 (24d) have been synthesized.
Resumo:
Background & objectives: The multiple drug resistance (MDR) is a serious health problem and major challenge to the global drug discovery programmes. Most of the genetic determinants that confer resistance to antibiotics are located on R-plasmids in bacteria. The present investigation was undertaken to investigate the ability of organic extract of the fruits of Helicteres isora to cure R-plasmids from certain clinical isolates. mMethods: Active fractions demonstrating antibacterial and antiplasmid activities were isolated from the acetone extracts of shade dried fruits of H. isora by bioassay guided fractionation. Minimal inhibitory concentration (MIC) of antibiotics and organic extracts was determined by agar dilution method. Plasmid curing activity of organic fractions was determined by evaluating the ability of bacterial colonies (pre treated with organic fraction for 18 h) to grow in the presence of antibiotics. The physical loss of plasmid DNA in the cured derivatives was further confirmed by agarose gel electrophoresis. Results: The active fraction did not inhibit the growth of either the clinical isolates or the strains harbouring reference plasmids even at a concentration of 400 mu g/ml. However, the same fraction could cure plasmids from Enterococcus faecalis, Escherichia coli, Bacillus cereus and E. coli (RP4) at curing efficiencies of 14, 26, 22 and 2 per cent respectively. The active fraction mediated plasmid curing resulted in the subsequent loss of antibiotic resistance encoded in the plasmids as revealed by antibiotic resistance profile of cured strains. The physical loss of plasmid was also confirmed by agarose gel electrophoresis. Interpretation & conclusions: The active fraction of acetone extract of H. isora fruits cured R-plasmids from Gram-positive and Gram-negative clinical isolates as well as reference strains. Such plasmid loss reversed the multiple antibiotic resistance in cured derivatives making them sensitive to low concentrations of antibiotics. Acetone fractions of H. isora may be a source to develop antiplasmid agents of natural origin to contain the development and spread of plasmid borne multiple antibiotic resistance.
Resumo:
Fish farming introduces nutrients, microbes and a wide variety of chemicals such as heavy metals, antifoulants and antibiotics to the surrounding environment. Introduction of antibiotics has been linked with the increased incidence of antibiotic resistant pathogenic bacteria in the farm vicinities. In this thesis molecular methods such as quantitative PCR and DNA sequencing were applied to analyze bacterial communities in sediments from fish farms and pristine locations. Altogether four farms and four pristine sites were sampled in the Baltic Sea. Two farm and two pristine locations were sampled over a surveillance period of four years. Furthermore, a new methodology was developed as a part of the study that permits amplifying single microbial genomes and capturing them according to any genetic traits, including antibiotic resistance genes. The study revealed that several resistance genes for tetracycline were found at the sediment underneath the aquaculture farms. The copy number of these genes remained elevated even at a farm that had not used any antibiotics since year 2000, six years before this study started. Similarly, an increase in the amount of mercury resistance gene merA was observed at the aquaculture sediment. The persistence of the resistance genes in absence of any selection pressure from antibiotics or heavy metals suggests that the genes may be introduced to the sediment by the farming process. This is also supported by the diversity pattern of the merA gene between farm and pristine sediments. The bacterial community-level changes in response to fish farming were very complex and no single phylogenetic groups were found that would be typical to fish farm sediments. However, the community structures had some correlation with the exposure to fish farming. Our studies suggest that the established approaches to deal with antibiotic resistance at the aquaculture, such as antibiotic cycling, are fundamentally flawed because they cannot prevent the introduction of the resistance genes and resistant bacteria to the farm area by the farming process. Further studies are required to study the entire fish farming process to identify the sources of the resistance genes and the resistant bacteria. The results also suggest that in order to prevent major microbiological changes in the surrounding aquatic environment, the farms should not be founded in shallow water where currents do not transport sedimenting matter from the farms. Finally, the technique to amplify and select microbial genomes will potentially have a considerable impact in microbial ecology and genomics.
Resumo:
Chlamydia pneumoniae can cause acute respiratory infections including pneumonia. Repeated and persistent Chlamydia infections occur and persistent C. pneumoniae infection may have a role in the pathogenesis of atherosclerosis and coronary heart disease and may also contribute to the development of chronic inflammatory lung diseases like chronic obstructive pulmonary disease (COPD) and asthma. In this thesis in vitro models for persistent C. pneumonia infection were established in epithelial and monocyte/macrophage cell lines. Expression of host cell genes in the persistent C. pneumoniae infection model of epithelial cells was studied by microarray and RT-PCR. In the monocyte/macrophage infection model expression of selected C. pneumoniae genes were studied by RT-PCR and immunofluorescence microscopy. Chlamydia is able to modulate host cell gene expression and apoptosis of host cells, which may assist Chlamydia to evade the host cells' immune responses. This, in turn, may lead to extended survival of the organism inside epithelial cells and promote the development of persistent infection. To simulate persistent C. pneumoniae infection in vivo, we set up a persistent infection model exposing the HL cell cultures to IFN-gamma. When HL cell cultures were treated with moderate concentration of IFN-gamma, the replication of C. pneumoniae DNA was unaffected while differentiation into infectious elementary bodies (EB) was strongly inhibited. By transmission electron microscopy small atypical inclusions were identified in IFN-gamma treated cultures. No second cycle of infection was observed in cells exposed to IFN-gamma , whereas C. pneumoniae was able to undergo a second cycle of infection in unexposed HL cells. Although monocytic cells can naturally restrict chlamydial growth, IFN-gamma further reduced production of infectious C. pneumoniae in Mono Mac 6 cells. Under both studied conditions no second cycle of infection could be detected in monocytic cell line suggesting persistent infection in these cells. As a step toward understanding the role of host genes in the development and pathogenesis of persistent C. pneumoniae infection, modulation of host cell gene expression during IFN-gamma induced persistent infection was examined and compared to that seen during active C. pneumoniae infection or IFN-gamma treatment. Total RNA was collected at 6 to 150 h after infection of an epithelial cell line (HL) and analyzed by a cDNA array (available at that time) representing approximately 4000 human transcripts. In initial analysis 250 of the 4000 genes were identified as differentially expressed upon active and persistent chlamydial infection and IFN-gamma treatment. In persistent infection more potent up-regulation of many genes was observed in IFN-gamma induced persistent infection than in active infection or in IFN-gamma treated cell cultures. Also sustained up-regulation was observed for some genes. In addition, we could identify nine host cell genes whose transcription was specifically altered during the IFN-gamma induced persistent C. pneumoniae infection. Strongest up-regulation in persistent infection in relation to controls was identified for insulin like growth factor binding protein 6, interferon-stimulated protein 15 kDa, cyclin D1 and interleukin 7 receptor. These results suggest that during persistent infection, C. pneumoniae reprograms the host transcriptional machinery regulating a variety of cellular processes including adhesion, cell cycle regulation, growth and inflammatory response, all of which may play important roles in the pathogenesis of persistent C. pneumoniae infection. C. pneumoniae DNA can be detected in peripheral blood mononuclear cells indicating that the bacterium can also infect monocytic cells in vivo and thereby monocytes can assist the spread of infection from the lungs to other anatomical sites. Persistent infection established at these sites could promote inflammation and enhance pathology. Thus, the mononuclear cells are in a strategic position in the development of persistent infection. To investigate the intracellular replication and fate of C. pneumoniae in mononuclear cells we analyzed the transcription of 11 C. pneumoniae genes in Mono Mac 6 cells during infection by real time RT-PCR. Our results suggest that the transcriptional profile of the studied genes in monocytes is different from that seen in epithelial cells and that IFN-gamma has a less significant effect on C. pneumoniae transcription in monocytes. Furthermore, our study shows that type III secretion system (T3SS) related genes are transcribed and that Chlamydia possesses a functional T3SS during infection in monocytes. Since C. pneumoniae infection in monocytes has been implicated to have reduced antibiotic susceptibility, this creates opportunities for novel therapeutics targeting T3SS in the management of chlamydial infection in monocytes.
Resumo:
The solution conformation of alamethicin, a 20-residue antibiotic peptide, has been investigated using two-dimensional n.m.r. spectroscopy. Complete proton resonance assignments of this peptide have been carried out using COSY, SUPERCOSY, RELAY COSY and NOESY two-dimensional spectroscopies. Observation of a large number of nuclear Overhauser effects between sequential backbone amide protons, between backbone amide protons and CβH protons of preceding residues and extensive intramolecular hydrogen bonding patterns of NH protons has established that this polypeptide is in a largely helical conformation. This result is in conformity with earlier reported solid state X-ray results and a recent n.m.r. study in methanol solution (Esposito et al. (1987) Biochemistry26, 1043-1050) but is at variance with an earlier study which favored an extended conformation for the C-terminal half of alamethicin (Bannerjee et al.
Resumo:
Indole butyric acid (IBA) initiates roots in the hypocotyl tissue of Phaseolus vulgaris (French bean). The response is dependent on the concentration of IBA and the duration of exposure to the hormone. IBA enhances the rate of total protein synthesis in ca 30 min after exposure of the hypocotyl segments to the hormone. There is no detectable change in total or poly(A)-containing RNA synthesis in this period although significant increases are seen 2 hr after hormone pre-treatment. The early IBA-mediated increase in protein synthesis (30 min) is not sensitive to Actinomycin D but the antibiotic blocks the increase manifested 2 hr after hormone pre-treatment. Inhibition of early protein synthesis by cycloheximide depresses and delays root initiation. Cytosol prepared from IBA-treated hypocotyl tissue stimulates protein synthesis in vitro to a greater extent than that of the control.
Resumo:
The binding characteristics of the antibiotics to nuclei and their effect on the permeability of nuclear membrane with respect to histones and ribonucleic acids have been investigated. The binding constant for chromomycin A3 was found to be 1.4 × 104M?1 and number of binding sites was equal to 3.48 ± 1.08 × 1012 molecules/nuclei. The antibiotic chromomycin A3 enhanced the uptake of lysine-rich histone, actinomycin D decreased the uptake and ethidium bromide had no effect. Chromomycin A3 also enhanced the release of acid insoluble fraction containing RNA from the nuclei, actinomycin D and ethidium bromide inhibited the release of acid insoluble fraction containing RNA. The relevance of this finding to the role of nuclear envelope in understanding the mechanism of action of the antibiotic has been discussed.
Resumo:
Use of adverse drug combinations, abuse of medicinal drugs and substance abuse are considerable social problems that are difficult to study. Prescription database studies might fail to incorporate factors like use of over-the-counter drugs and patient compliance, and spontaneous reporting databases suffer from underreporting. Substance abuse and smoking studies might be impeded by poor participation activity and reliability. The Forensic Toxicology Unit at the University of Helsinki is the only laboratory in Finland that performs forensic toxicology related to cause-of-death investigations comprising the analysis of over 6000 medico-legal cases yearly. The analysis repertoire covers most commonly used drugs and drugs of abuse, and the ensuing database contains also background information and information extracted from the final death certificate. In this thesis, the data stored in this comprehensive post-mortem toxicology database was combined with additional metabolite and genotype analyses that were performed to complete the profile of selected cases. The incidence of drug combinations possessing serious adverse drug interactions was generally low (0.71%), but it was notable for the two individually studied drugs, a common anticoagulant warfarin (33%) and a new generation antidepressant venlafaxine (46%). Serotonin toxicity and adverse cardiovascular effects were the most prominent possible adverse outcomes. However, the specific role of the suspected adverse drug combinations was rarely recognized in the death certificates. The frequency of bleeds was observed to be elevated when paracetamol and warfarin were used concomitantly. Pharmacogenetic factors did not play a major role in fatalities related to venlafaxine, but the presence of interacting drugs was more common in cases showing high venlafaxine concentrations. Nicotine findings in deceased young adults were roughly three times more prevalent than the smoking frequency estimation of living population. Contrary to previous studies, no difference in the proportion of suicides was observed between nicotine users and non-nicotine users. However, findings of abused substances, including abused prescription drugs, were more common in the nicotine users group than in the non-nicotine users group. The results of the thesis are important for forensic and clinical medicine, as well as for public health. The possibility of drug interactions and pharmacogenetic issues should be taken into account in cause-of-death investigations, especially in unclear cases, medical malpractice suspicions and cases where toxicological findings are scarce. Post-mortem toxicological epidemiology is a new field of research that can help to reveal problems in drug use and prescription practises.
Resumo:
The conformational properties of the protected seven-residue C-terminal fragment the lipopeptaibol antibiotic Trichogin A IV (Boc-Gly-Gly-Leu-Aib-Gly-Ile-Leu-OMe) has been examined in CDCl3 and (CD3)2SO by 1H-nmr. Evidence for a multiple β-turn conformation [type I′ at Gly(1)-Gly(2), type II at Leu(3)-Aib(4), and a type I′ at Aib(4)-Gly(5)] suggests that Leu(3) has preferred an extended or semiextended conformation over a helical conformation in CDCl3. This structure is thus in contrast to earlier observations of seven-residue peptides containing a single central Aib preferring helical conformations in both solution and crystalline slates. A structural transition to a frayed right-handed helix is absented in (CD3)2SO. These results suggest that nonhelical conformations may be important in Gly-rich peptides containing Aib. Further, the presence of amino acids with contradictory influences on backbone conformational freedom can lead to well-defined conformational transitions even in small peptides
Resumo:
Molecular dynamics simulation studies on polyene antifungal antibiotic amphotericin B, its head-to-tail dimeric structure and lipid - amphotericin B complex demonstrate interesting features of the flexibilities within the molecule and define the optimal interactions for the formation of a stable dimeric structure and complex with phospholipid.
Resumo:
We report in this paper the aggregation properties of amphotericin-B (amp-B) in solution using CD and 1H-NMR techniques. Our results indicate that the preferred structure of amp-B in dimethylsulfoxide is a monomer at low concentrations (10−4M and below) and a stable dimer at higher concentrations (range 5 · 103 M to 10−2M). In a DMSO/ethanol mixture (1:1 (v/v)), the antibiotic is monomeric, irrespective of the concentration within the range studied. We propose a head-to-tail model based on NMR data. An understanding of the head-to-tail dimer, is, we believe important, particularly in view of the recent report wherein it is proposed that the drug inserts into bilayers as head-to-tail oligomers.
Resumo:
The interactions between the polyene antibiotic amphotericin B with dipalmitoylphosphatidylcholine were investigated in vesicles (using circular dichroism) and in chloroform solution (using circular dichroism and IH, I3C, and 31P nuclear magnetic resonance). The results show that amphotericin B readily aggregates in vesicles and that the extent of aggregation depends on the 1ipid:drug concentration ratio. Introduction of sterol molecules into the membrane hastens the process of aggregation of amphotericin B. In chloroform solutions amphotericin B strongly interacts with phospholipid molecules to form a stoichiometric complex. The results suggest that there are interactions between the conjugated heptene stretch of amphotericin B and the methylene groups of lipid acyl chains, while the sugar moiety interacts with the phosphate head group by the formation of a hydrogen bond. A model is proposed for the lipid-amphotericin B complex, in which amphotericin B interacts equally well with the two lipid acyl chains, forming a 1:l complex.