1000 resultados para Anchors, Sea
Resumo:
This is a report of the study of the authigenic sulfide minerals and their sulfur isotopes in a sediment core (NH-1) collected on the northern continental slope of the South China Sea, where other geophysical and geochemical evidence seems to suggest gas hydrate formation in the sediments. The study has led to the findings: (1) the pyrite content in sediments was relatively high and its grain size relatively large compared with that in normal pelagic or hemipelagic sediments; (2) the shallowest depth of the acid volatile sulfide (AVS) content maximum was at 437.5 cm (> 2 mu mol/g), which was deeper than that of the authigenic pyrite content maximum (at 141.5-380.5 cm); (3) delta S-34 of authigenic pyrite was positive (maximum: +15 parts per thousand) at depth interval of 250-380 cm; (4) the positive delta S-34 coincided with pyrite enrichment. Compared with the results obtained from the Black Sea sediments by Jorgensen and coworkers, these observations indicated that at the NH-1 site, the depth of the sulfate-methane interface (SMI) would be or once was at about 437.5-547.5 cm and the relatively shallow SMI depth suggested high upward methane fluxes. This was in good agreement with the results obtained from pore water sulfate gradients and core head-space methane concentrations in sediment cores collected in the area. All available evidence suggested that methane gas hydrate formation may exist or may have existed in the underlying sediments.
Resumo:
The characteristics and distribution patterns of detrital minerals (0.063 similar to 0.125 mm) in marine sediments provide a significant indicator for the identification of the origin of sediment. The detrital mineral composition of 219 surface sediment samples was analysed to identify the distribution of sediments within the western Philippine Sea. The area can be divided into three mineral provinces: ( 1) province east of the Philippine Trench, the detrital minerals in this province are mainly composed of calcareous or siliceous organisms, with the addition of volcanogenic minerals from an adjacent island arc; (II) middle mineral province, clastic minerals including feldspar, quartz and colorless volcanic glass, sourced from seamounts with intermediate-acid volcanic rock, or erupting intermediate-acid volcano; (III) province west of the Palau-Kyushii Ridge, the matter provenance within this province is complex; the small quantity of feldspar and quartz may be sourced from seamounts or erupting volcano with intermediate - acid composition, with a component of volcanic scoria sourced from a volcano erupting on the Palau-Kyushu Ridge. it is suggested that, ( I) Biogenic debris of the study area is closely related to water depth, with the amount of biogenic debris controlled by carbonate lysocline. (2) Volcaniclastic matter derived from the adjacent island are can be entrained by oceanic currents and transported towards the abyssal basin over a short distance. The weathering products of volcanic rocks of the submarine plateau ( e. g. I Benham Plateau) and adjacent ridges provide an important source of detrital sedimentation, and the influence scope of them is constrained by the intensity of submarine weathering. (3) Terrigenous sediments from the continent of Asia and the adjacent Philippine island arc have little influence on the sedimentation of this study area, and the felsic mineral component is probably sourced from volcanic seamounts of intermediate-acid composition.
Resumo:
Processing of a recently acquired seismic line in the northeastern South China Sea by Project 973 has been conducted to study the character and the distribution of gas hydrate Bottom-Simulating Reflectors (BSRs) in the Hengchun ridge. Analysis of different-type seismic profiles shows that the distribution of BSRs can be revealed to some extents by single-channel profile in this area, but seismic data processing plays an important role to resolve the full distribution of BSRs in this area. BSR' s in the northeastern South China Sea have the typical characteristics of BSRs on worldwide continental margins: they cross sediment bed reflections, they are generally parallel to the seafloor and the associated reflections have strong amplitude and a negative polarity. The characteristics of BSRs in this area are obvious and the BSRs indicate the occurrence of gas hydrate-bearing sediments in the northeastern South China Sea. The depth of the base of the gas-hydrate stability zone was calculated using the phase stability boundary curve of methane hydrate and gas hydrate with mixture gas composition and compared with the observed BSR depth. If a single gradient geothermal curve is used for the calculation, the base of the stability zone for methane hydrate or gas hydrate with a gas mixture composition does not correspond to the depth of the BSRs observed along the whole seismic profile. The geothermal gradient therefore changes significantly along the profile. The geothermal gradient and heat flow were estimated from the BSR data and the calculations show that the geothermal gradient and heat flow decrease from west to east, with the increase of the distance from the trench and the decrease of the distance to the island arc. The calculated 2 heat flow changes from 28 to 64 mW/m(2), which is basically consistent with the measured heat flow in southwestern offshore Taiwan.
Resumo:
We here reconstruct the past change of the East Asian monsoon since 20 Ma using samples from Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea based On a multi-proxy approach including a monomineralic quartz isolation procedure, identification of clay minerals by X-ray Diffraction (XRD) and grain-size analysis of isolated terrigenous materials. Terrigenous supply to ODP Site 1146 was dominated by changes in the strength of multiple sources and transport processes. Grain-size data modeled by an end-member modeling algorithm indicate that eolian dust from the and Asian inland and fluvial input have contributed on average 20% and 80% of total terrigenous material to ODP Site 1146, respectively. Specifically, about 40-53% of the total (quartz+feldspar) and only 6-11% of the total clay is related to eolian supply at the study site. Detailed analysis of the sedimentary environment, and clay minerals combined with previous studies shows that smectite originates mainly from Luzon, kaolinite from the Pearl River and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The proportion and mass accumulation rate (MAR) of the coarsest end-member EM1 (interpreted as eolian dust), ratios of (illite+chlorite)/smectite, (quartz+feldspar)% and mean grain-size of terrigenous materials at ODP Site 1146 were adopted as proxies for East Asian monsoon evolution. The consistent variation of these independent proxies since 20 Ma shows three profound shifts in the intensity of East Asian winter monsoon relative to summer monsoon, as well as aridity of the Asian continent, occurred at similar to 15 Ma, similar to 8 Ma and the youngest at about 3 Ma. In comparison, the summer monsoon intensified contemporaneously with the winter monsoon at 3 Ma. The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at similar to 15 Ma, 8 Ma and 3 Ma. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
To examine the source and preservation of organic matter in the shelf sediments of the East China Sea (ECS), we measured bulk C/N and isotopes, organic biomarkers (n-alkanes and fatty acids) and compound-specific (fatty acids) stable carbon isotope ratios in three sediment cores collected from two sites near the Changjiang Estuary and one in the ECS shelf. Contrasting chemical and isotopic compositions of organic matter were observed between the estuarine and shelf sediments. The concentrations of total n-alkanes and fatty acids in the shelf surface sediments (0-2 cm) were 5-10 times higher than those in estuarine surface sediments but they all decreased rapidly to comparable levels below the surface layer. The compositions of n-alkanes in the estuarine sediments were dominated by C-26-C-33 long-chain n-alkanes with a strong odd-to-even carbon number predominance. In contrast, the composition of n-alkanes in the shelf sediment was dominated by nC(15) to nC(22) compounds. Long-chain (> C-20) fatty acids (terrestrial biomarkers) accounted for a significantly higher fraction in the estuarine sediments compared to that in the shelf sediment, while short-chain (< C-20) saturated and unsaturated fatty acids were more abundant in the shelf surface sediments than in the estuarine sediments. Stable carbon isotopic ratios of individual fatty acids showed a general positive shift from estuarine to shelf sediments, consistent with the variations in bulk delta(CTOCTOC)-C-13. These contrasts between the estuarine and shelf sediments indicate that terrestrial organic matter was mainly deposited within the Changjiang Estuary and inner shelf of ECS. Post-depositional diagenetic processes in the surface sediments rapidly altered the chemical compositions and control the preservation of organic matter in the region.
Resumo:
Concentrations and carbon isotopic (C-14, C-13) compositions of black carbon (BC) were measured for three sediment cores collected from the Changjiang River estuary and the shelf of the East China Sea. BC concentrations ranged from 0.02 to 0.14 mg/g (dry weight), and accounted for 5% to 26% of the sedimentary total organic carbon (TOC) pool. Among the three sediment cores collected at each site, sediment from the Changjiang River estuary had relatively high BC contents compared with the sediments from the East China Sea shelf, suggesting that the Changjiang River discharge played an important role in the delivery of BC to the coastal region. Radiocarbon measurements indicate that the ages of BC are in the range of 6910 to 12250 years old B. P. (before present), that is in general, 3700 to 9000 years older than the C-14 ages of TOC in the sediments. These variable radiocarbon ages suggest that the BC preserved in the sediments was derived from the products of both biomass fire and fossil fuel combustion, as well as from ancient rock weathering. Based on an isotopic mass balance model, we calculated that fossil fuel combustion contributed most (60%. 80%) of the BC preserved in these sediments and varied with depth and locations. The deposition and burial of this "slow-cycling" BC in the sediments of the East China Sea shelf represent a significant pool of carbon sink and could greatly influence carbon cycling in the region.
Resumo:
273 samples from Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea (SCS) were analyzed for grain-size distributions using grain-size class vs. standard deviation method and end-member modeling algorithm (EMMA) in order to investigate the evolution of the East Asian mon-soon since about 20 Ma. 10-19 mu m/1.3-2.4 mu m, the ratio of two grain-size populations with the highest variability through time was used to indicate East Asian winter monsoon intensity relative to summer monsoon. The mass accumulation rate of the coarsest end member EM1 (eolian), resulting from EMMA, can be used as a proxy of winter monsoon strength and Asian inland aridity, and the ratio of EM1/(EM2+EM3) as a proxy of winter monsoon intensity relative to summer monsoon. The combined proxies show that a profound enhancement of East Asian winter monsoon strength and winter monsoon intensity relative to summer monsoon occurred at about 8 Ma, and it is possible that the summer monsoon simultaneously intensified with winter monsoon at 3 Ma. Our results are well consistent with the previous studies in loess, eolian deposion in the Pacifc, radiolarians and planktonic foraminifera in the SCS. The phased uplift of the Himalaya-Tibetan Plateau may have played a significant role in strengthening the Asian monsoon at 8 Ma and 3 Ma.
Resumo:
The passive northern continental margin of the South China Sea is rich in gas hydrates, as inferred from the occurrence of bottom-simulating reflectors (BSR) and from well logging data at Ocean Drilling Program (ODP) drill sites. Nonetheless, BSRs on new 2D multichannel seismic reflection data from the area around the Dongsha Islands (the Dongsha Rise) are not ubiquitous. They are confined to complex diapiric structures and active fault zones located between the Dongsha Rise and the surrounding depressions, implying that gas hydrate occurrence is likewise limited to these areas. Most of the BSRs have low amplitude and are therefore not clearly recognizable. Acoustic impedance provides information on rock properties and has been used to estimate gas hydrate concentration. Gas hydrate-bearing sediments have acoustic impedance that is higher than that of the surrounding sediments devoid of hydrates. Based on well logging data, the relationship between acoustic impedance and porosity can be obtained by a linear regression, and the degree of gas hydrate saturation can be determined using Archie's equation. By applying these methods to multichannel seismic data and well logging data from the northern South China Sea, the gas hydrate concentration is found to be 3-25% of the pore space at ODP Site 1148 depending on sub-surface depth, and is estimated to be less than values of 5% estimated along seismic profile 0101. Our results suggest that saturation of gas hydrate in the northern South China Sea is higher than that estimated from well resistivity log data in the gas hydrate stability zone, but that free gas is scarce beneath this zone. It is probably the scarcity of free gas that is responsible for the low amplitudes of the BSRs.
Resumo:
Sedimentary basins in the Yellow Sea can be grouped tectonically into the North Yellow Sea Basin (NYSB), the northern basin of the South Yellow Sea (SYSNB) and the southern basin of the South Yellow Sea (SYSSB). The NYSB is connected to Anju Basin to the east. The SYSSB extends to Subei Basin to the west. The acoustic basement of basins in the North Yellow Sea and South Yellow Sea is disparate, having different stratigraphic evolution and oil accumulation features, even though they have been under the same stress regime since the Late Triassic. The acoustic basement of the NYSB features China-Korea Platform crystalline rocks, whereas those in the SYSNB and SYSSB are of the Paleozoic Yangtze Platform sedimentary layers or metamorphic rocks. Since the Late Mesozoic terrestrial strata in the eastern of the NYSB (West Korea Bay Basin) were discovered having industrial hydrocarbon accumulation, the oil potential in the Mesozoic strata in the west depression of the basin could be promising, although the petroleum exploration in the South Yellow Sea has made no break-through yet. New deep reflection data and several drilling wells have indicated the source rock of the Mesozoic in the basins of South Yellow Sea, and the Paleozoic platform marine facies in the SYSSB and Central Rise could be the other hosts of oil or natural gas. The Mesozoic hydrocarbon could be found in the Mesozoic of the foredeep basin in the SYSNB that bears potential hydrocarbon in thick Cretaceous strata, and so does the SYSSB where the same petroleum system exists to that of oil-bearing Subei Basin.
Resumo:
Based upon analyses of grain-size, rare earth element (REE) compositions, elemental occurrence phases of REE, and U-series isotopic dating, the sediment characteristics and material sources of the study area were examined for the recently formed deep-sea clays in the eastern Philippine Sea. The analytical results are summarized as follows. (1) Low accumulation rate, poor sorting and roundness, and high contents of grains coarser than fine silt indicate relatively low sediment input, with localized material source without long distance transport. (2) The REE Contents are relatively high. Shale-normalized patterns of REE indicate weak enrichment in heavy REE (HREE), Ce-passive anomaly, and Eu-positive anomaly. (3) Elemental occurrence phases of REE between the sediments with and without crust are similar. REE mainly concentrate in residual phase and then in ferromanganese oxide phase. The light REE (LREE) enrichment, Ce-positive anomaly, and Eu-positive anomaly occur in residual phase. Ferromanganese oxide phase shows the characteristics of relatively high HREE content and Ce-passive anomaly. (4) There are differences in each above mentioned aspect between the sediments with and without ferromanganese crust. (5) Synthesizing the above characteristics and source discriminant analysis, the study sediments are deduced to mainly result from the alteration of local and nearby volcanic materials. Continental materials transported by wind and/or river (ocean) flows also have minor contributions.
Resumo:
From systemic research of microstructure, geochemistry, uranium-series and Be-10 isotope dating on a new-type deepwater ferromanganese crust from the East Philippine Sea, the paleoenvironment evolution of the target area since the terminal Late Miocene was recovered. The vertical section changes of microstructure and chemical composition are consistent in the studied crust, which indicate three major accretion periods and corresponding paleoenvironment evolution of the crust. The bottom crust zone was formed in the terminal Late Miocene (5.6 Ma) with loose microstructure, high detritus content and high growth rate. Reductions of mineral element content, accretion rate and positive Ce-anomaly degree at 4.6 Ma indicate temporal warming, which went against the crust accretion and finally formed an accretion gap in the terminal Middle Pliocene (2.8-2.7 Ma). The more active Antarctic bottom seawaters in the Late Pliocene (2.7 Ma) facilitated the fast transfer to the top pure crust zone. Hereafter, with the further apart of volcanic source and the keeping increase of eolian material (1.0 Ma), although surrounding conditions were still favorable, mineral element content still shows an obvious reducing trend. It thereby offers new carrier and data for the unclear paleoceanographic research of the target area since the terminal Late Miocene.
Resumo:
The whole rock K-Ar ages of basalts from the South China Sea basin vary from 3.8 to 7.9 Ma, which suggest that intra-plate volcanism after the cessation of spreading of the South China Sea (SCS) is comparable to that in adjacent regions around the SCS, i.e., Leiqiong Peninsula, northern margin of the SCS, Indochina block, and so on. Based on detailed petrographic studies, we selected many fresh basaltic rocks and measured their major element, trace element, and Sr-Nd-Pb isotope compositions. Geochemical characteristics of major element and trace element show that these basaltic rocks belong to alkali basalt magma series, and are similar to OIB-type basalt. The extent of partial melting of mantle rock in source region is very low, and magma may experience crystallization differentiation and cumulation during the ascent to or storing in the high-level magma chamber. Sr-Nd-Pb isotopic data of these basaltic rocks imply an inhomogeneous mantle below the South China Sea. The nature of magma origin has a two end-member mixing model, one is EM2 (Enriched Mantle 2) which may be originated from mantle plume, the other is DMM (Depleted MORB Mantle). Pb isotopic characteristics show the Dupal anomaly in the South China Sea, and combined with newly found Dupal anomaly at Gakkel ridge in Arctic Ocean, this implies that Dupal anomaly is not only limited to South Hemisphere. In variation diagrams among Sr, Nd and Pb, the origin nature of mantle below the SCS is similar to those below Leiqiong peninsula, northern margin of the SCS and Indochina peninsula, and is different from those below north and northeast China. This study provides geochemical constraints on Hainan mantle plume.
Resumo:
Characteristics and distribution patterns of elastic minerals (0.063 similar to 0.125 mm) in bottom sediments represent a significant indicator for the identification of the origin of sediment. One hundred and fourteen surface sediment samples, which were collected from the area near the Zhongsha Islands in the South China Sea, were analysed to identify the mineral suites and their distributions in the study area. The area can be divided into three mineral provinces: ( I) a province of biogenic minerals, which mainly originate from the Zhongsha Atoll; ( H) a province of volcanogenic minerals, which are mainly derived from local basaltic seamounts and small-scale volcanoes that are probably erupting, with some influences from the island-are volcanic region around the South China Sea; and (II) a mixed mineral province whose material source includes biogenic minerals, volcanogenic minerals and terrigenous minerals; the last province can be subdivided into a mixed mineral sub-province of the northeastern part of the study area, in which terrigenous minerals are mainly derived from China's Mainland and do not exceed 17 degrees N, and a mixed mineral sub-province of the southeastern part of the study area, in which terrigenous minerals are derived from Kalimantan and Indochina Peninsula and might be further transported into the deep sea basin through submarine canyons.
Resumo:
The stratigraphic architecture, structure and Cenozoic tectonic evolution of the Tan-Lu fault zone in Laizhou Bay, eastern China, are analyzed based on interpretations of 31 new 2D seismic lines across Laizhou Bay. Cenozoic strata in the study area are divided into two layers separated by a prominent and widespread unconformity. The upper sedimentary layer is made up of Neogene and Quaternary fluvial and marine sediments, while the lower layer consists of Paleogene lacustrine and fluvial facies. In terms of tectonics, the sediments beneath the unconformity can be divided into four main structural units: the west depression, central uplift, east depression and Ludong uplift. The two branches of the middle Tan-Lu fault zone differ in their geometry and offset: the east branch fault is a steeply dipping S-shaped strike-slip fault that cuts acoustic basement at depths greater than 8 km, whereas the west branch fault is a relatively shallow normal fault. The Tan-Lu fault zone is the key fault in the study area, having controlled its Cenozoic evolution. Based on balanced cross-sections constructed along transverse seismic line 99.8 and longitudinal seismic line 699.0, the Cenozoic evolution of the middle Tan-Lu fault zone is divided into three stages: Paleocene-Eocene transtension, Oligocene-Early Miocene transpression and Middle Miocene to present-day stable subsidence. The reasons for the contrasting tectonic features of the two branch faults and the timing of the change from transtension to transpression are discussed. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
C-37 unsaturated alkenones were analyzed on a core retrieved from the middle Okinawa Trough. The calculated U-37(K') displays a trend generally parallel with those of the oxygen isotopic compositions of two planktonic foraminiferal species, Neogloboquadrina dutertrei and Globigerinoides sacculifer, suggesting that in this region, SST has varied in phase with global ice volume change since the last glacial -interglacial cycle. The U-37(K')-derived SST ranged from ca. 24.0 to 27.5 degrees C, with the highest value 27.5 degrees C occurring in marine isotope stage 5 and the lowest similar to 24.0 degrees C in marine isotope stage 2. This trend is consistent with the continental records from the East Asian monsoon domain and the marine records from the Equatorial Pacific. The deglacial increase of the U-37(K')-derived SST is similar to 2.4 degrees C from the Last Glacial Maximum to the Holocene. (c) 2007 Elsevier B.V. All rights reserved.