990 resultados para Aircraft exhaust emissions.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented is concerned with the estimation of manufacturing cost at the concept design stage, when little technical information is readily available. The work focuses on the nose cowl sections of a wide range of engine nacelles built at Bombardier Aerospace Shorts of Belfast. A core methodology is presented that: defines manufacturing cost elements that are prominent; utilises technical parameters that are highly influential in generating those costs; establishes the linkage between these two; and builds the associated cost estimating relations into models. The methodology is readily adapted to deal with both the early and more mature conceptual design phases, which thereby highlights the generic, flexible and fundamental nature of the method. The early concept cost model simplifies cost as a cumulative element that can be estimated using higher level complexity ratings, while the mature concept cost model breaks manufacturing cost down into a number of constituents that are each driven by their own specific drivers. Both methodologies have an average error of less that ten percent when correlated with actual findings, thus achieving an acceptable level of accuracy. By way of validity and application, the research is firmly based on industrial case studies and practice and addresses the integration of design and manufacture through cost. The main contribution of the paper is the cost modelling methodology. The elemental modelling of the cost breakdown structure through materials, part fabrication, assembly and their associated drivers is relevant to the analytical design procedure, as it utilises design definition and complexity that is understood by engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The harsh environment presented by engines, particularly in the exhaust systems, often necessitates the use of robust and therefore low bandwidth temperature sensors. Consequently, high frequencies are attenuated in the output. One technique for addressing this problem involves measuring the gas temperature using two sensors with different time-constants and mathematically reconstructing the true gas temperature from the resulting signals. Such a technique has been applied in gas turbine, rocket motor and combustion research. A new reconstruction technique based on difference equations has been developed and its effectiveness proven theoretically. The algorithms have been successfully tested and proven on experimental data from a rig that produces cyclic temperature variations. These tests highlighted that the separation of the thermocouple junctions must be very small to ensure that both sensors are subjected to the same gas temperatures. Exhaust gas temperatures were recorded by an array of thermocouples during transient operation of a high performance two-stroke engine. The results show that the increase in bandwidth arising from the dual sensor technique allowed accurate measurement of exhaust gas temperature with relatively robust thermocouples. Finally, an array of very fine thermocouples (12.5 - 50 microns) was used to measure the in-cycle temperature variation in the exhaust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper is primarily concerned with the modelling of aircraft manufacturing cost. The aim is to establish an integrated life cycle balanced design process through a systems engineering approach to interdisciplinary analysis and control. The cost modelling is achieved using the genetic causal approach that enforces product family categorisation and the subsequent generation of causal relationships between deterministic cost components and their design source. This utilises causal parametric cost drivers and the definition of the physical architecture from the Work Breakdown Structure (WBS) to identify product families. The paper presents applications to the overall aircraft design with a particular focus on the fuselage as a subsystem of the aircraft, including fuselage panels and localised detail, as well as engine nacelles. The higher level application to aircraft requirements and functional analysis is investigated and verified relative to life cycle design issues for the relationship between acquisition cost and Direct Operational Cost (DOC), for a range of both metal and composite subsystems. Maintenance is considered in some detail as an important contributor to DOC and life cycle cost. The lower level application to aircraft physical architecture is investigated and verified for the WBS of an engine nacelle, including a sequential build stage investigation of the materials, fabrication and assembly costs. The studies are then extended by investigating the acquisition cost of aircraft fuselages, including the recurring unit cost and the non-recurring design cost of the airframe sub-system. The systems costing methodology is facilitated by the genetic causal cost modeling technique as the latter is highly generic, interdisciplinary, flexible, multilevel and recursive in nature, and can be applied at the various analysis levels required of systems engineering. Therefore, the main contribution of paper is a methodology for applying systems engineering costing, supported by the genetic causal cost modeling approach, whether at a requirements, functional or physical level.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology to estimate the cost implications of design decisions by integrating cost as a design parameter at an early design stage is presented. The model is developed on a hierarchical basis, the manufacturing cost of aircraft fuselage panels being analysed in this paper. The manufacturing cost modelling is original and relies on a genetic-causal method where the drivers of each element of cost are identified relative to the process capability. The cost model is then extended to life cycle costing by computing the Direct Operating Cost as a function of acquisition cost and fuel burn, and coupled with a semi-empirical numerical analysis using Engineering Sciences Data Unit reference data to model the structural integrity of the fuselage shell with regard to material failure and various modes of buckling. The main finding of the paper is that the traditional minimum weight condition is a dated and sub-optimal approach to airframe structural design.