1000 resultados para Air bases
Resumo:
Compounds of Sr4Al14O15: Eu were prepared in air atmosphere by high temperature solid state reaction. The reduction of Eu3+--> Eu2+ was firstly observed in the aluminate phosphor of Sr4Al14O25: Eu synthesized in air condition. This made aluminate a new family and Sr4Al14O25 a new member of compounds in which Eu3+ ion could be reduced to Eu2+ form when fired in air atmosphere. The reduction of Eu3+ --> Eu2+ in Sr4Al14O25: Eu was explained by means of a charge compensation model. Experiments based on the model were designed and carried out, and the results supported this model.
Resumo:
The coordination numbers for the samarium atoms and the Sm-O bond distances in SrB4O7:Sm and SrB6O10:Sm prepared in air were determined by means of Sm-L-3 edge EXAFS. The coordination. was found to be nine-folded for both these hosts and the bond distance was 2.40-2.42 Angstrom in SrB4O7:Sm and 2.42-2.44 Angstrom in SrB6O10:Sm. For SrB4O7:Sm the coordination number is coincident with that of the strontium. atoms suggesting the substitution of the samarium atoms at the strontium sites. The coordination number of the strontium atoms in SrB6O10 was also suggested to be nine assuming the same type of substitution. The valences of samarium were determined from the luminescent spectra. Both divalent and trivalent ions were present in both SrB4O7:Sm and SrB6O10:Sm, while the fraction of Sm2+ was higher in the former than in the latter. This difference has been assigned to the difference in rigidity between the B-O networks in these structures.
Resumo:
The high-resolution luminescent spectrum of divalent samarium excited by 355 nm UV light at 77 K, the VUV excitation spectra, the VUV excited emission spectra and EXAFS at Sm-L-3 edge were reported for samarium doped strontium borophosphate, SrBPO5:Sm prepared by solid state reaction in air at high temperature. The high-resolution luminescent spectrum showed that the divalent samarium ions occupied the C-2upsilon lattice sites. The VUV excitation spectra indicated that the sample exhibited absorption bands with the maxima at 129 and 148 nm, respectively. The performance of EXAFS at Sm-L3 absorption edge suggested that the samarium ions were nine-coordinated and the mean distances of bond Sm-O were 2.38 Angstrom.
Resumo:
When alkaline earth ions in borates, phosphates or borophosphates [SrB4O7, SrB6O10, BaB8O13, MBPO5 (M=Ca,Sr)] are substituted partially and aliovalently by trivalent rare earth ions such as Sm3+, Eu3+, these rare earth ions can be reduced to divalent state by the produced negative charge vacancy V-M". The matrices must have appropriate structure containing a rigid three-dimensional network of tetragonal AO(4) groups (A=B,P). These groups can surround and isolate the produced divalent RE2+ ions from the reaction with oxygen. Therefore, this reduction reaction can be carried out even in air at high temperature. The produced divalent rare earth ions can be detected by luminescence and XANES methods and their spectroscopic properties are discussed.
Resumo:
VUV-UV and Eu-L-3 edge XANES spectra were measured for europium-doped strontium tetraborate prepared by solid state reaction at high temperature in air. The VUV-UV spectra show that the host absorption band of (SrBO7)-O-4 appears below 170 nm. The charge transfer band of Eu3+ doped in SrB4O7 is peaked at 272 nm. The 4f-5d transitions of Eu2+ consist of a band peaked at 310 nm with a shoulder at 280 nm and also include the bands peaked at 238 (weak) and 203 (strong) nm. The result of XANES spectrum at Eu-L3 edge of the synthesized sample indicates that Eu3+ and Eu2+ coexist in SrB4O7:Eu prepared in air, which is consistent with the results of the VUV-UV spectra.
Resumo:
The local structure and the valences of europium in SrBPO5:Eu prepared in air were checked by means of XAFS at Eu-L-3 edge. From the EXAFS results, it was discovered that the doped europium atoms were nine-coordinated by oxygen atoms and the distances of bond Eu-O were 2.42 Angstrom in the host. From the XANES data, it was found that the divalent and trivalent europium coexisted in the matrix. The emission spectra excited by VUV or UV exhibited a prominent broad band due to the 4f(6)5d-4f(7) transition of Eu2+ ions, which indicated that the trivalent europium ions were reduced in air in the matrix at high temperature by the defects [V-Sr]" formed by aliovalent substitution between Sr2+ and Eu3+ ions. The VUV excitation spectra in 100-200 nm range showed that the matrix had absorption bands with the maxima at about 130 and 150 nm, respectively.
Resumo:
XAFS (EXAFS and XANES) at Eu-L-3 edge were used to determine the local structure and the valences of europium in CaBPO5:Eu prepared in air. The results of EXAFS showed that the doped europium atoms were nine-coordinated by oxygen atoms and the distances of bond Eu-O were 2.39 Angstrom in the host lattice. XANES at Eu-L-3 edge exhibited that Eu2+ and Eu3+ coexisted in the matrix. The luminescent spectrum of the material excited by VUV at 147 nm presented a similar spectrum with that excited by f-f transition of Eu2+ at 396 nm and f-d transition of Eu2+ at 312 nm. The broad emission band due to both 4f(6)5d - 4f(7) transition of EU2+ and f - f transition of Eu3+ could be observed in emission spectra, which indicated that the trivalent europium ions were reduced in air in the matrix at high temperature by the defects [V-Cn]" formed by aliovalent substitution between Ca2+ and Eu3+ ions. The UV excitation spectrum showed the typical f-f transition of Eu3+ and f-d transition of Eu2+. The bands with the maxima at about 113 and 158 nm in VUV excitation spectrum were assigned to originate from the absorption of the host lattice.
Resumo:
Blend modified polyimide (PI) hollow fiber membranes were used in vapor permeation for gas phase dehydration of ethanol. Dry air sweeping operation was used and the dry air was supplied by a dehumidification membrane module of compressed air. An integrated membrane process was composed. The effects of some factors, such as the modification of membrane materials, the humidity and current velocity of sweeping air, the operation temperature, on the efficiency of dehydration were discussed.
Resumo:
Fullerenes-extracted soot (FES) is the by-product of fullerenes production. Retention characteristics at different temperatures for 17 volatile organic compounds (VOCs) on FES are measured. The adsorption and desorption efficiencies for VOCs on FES adsorbent tubes range from 40.8 to 117%, most of them being 100+/-20%. The values are compared with Tenax GR, an adsorbent commonly used in environmental analysis. FES can be used as an adsorbent of low cost to collect VOCs in environmental samples. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The spectroscopic feature of divalent Sm2+, Eu2+, Tm2+ and Yb2+ is discussed in this paper. Especially the spectroscopic properties of some berates containing tetrahedral BO4 group such as SrB4O7, SrB6O10 and BaB8O13 doped with these divalent ions are reported. When the divalent alkaline earth ion in these berates is replaced partially by the above trivalent rare earth ion, the charge carried in the produced defects can be used as reductant to reduce the doped rare earth ion into divalent state at high temperature even in air. Therefore, a convenient and safe method is provided to prepared phosphors doped with these divalent rare earths.
Resumo:
The reduction of RE3+ to RE2+ (RE=Eu, Sm and Tm) in SrB6O10 prepared in air by high-temperature solid state reaction was observed. The luminescent properties of Eu2+ and Tm2+ show f-d transition and Sm2+ shows f-f transition at room temperature. Three crystallographic sites for Sm2+ in matrix are available. Vibronic transition of D-5(0)-F-7(0) of Sm2+ was studied. The coupled phonon energy about 108 cm(-1), was determined: from the vibronic transition. Due to the thermal population from D-5(0) level, (D1-FJ)-D-5-F-7 (J=0, 1, 2) transitions of Sm2+ were observed at room temperature. A charge compensation mechanism is proposed as a possible explanation.
Resumo:
This paper reports a new observation of the abnormal reduction of Eu3+ --> Eu2+ in Sr2B5O9Cl when prepared in air at high temperature. A model based on the nature of substitution defects is proposed to explain this abnormal reduction. Electrons, which reduced the Eu3+ ions, are created by the substitution of cations first and then transferred to the target Eu3+ ions via tetrahedral berate anion groups. Codoping experiments are designed and performed. The results of these experiments support the model proposed. (C) 1999 Academic Press.
Resumo:
SnO2 nanoparticles were found to self-pack at the air-hydrosol interface and form a nanoparticulate film. The self-packed films were observed under a Brewster angle microscope, and investigated by recording the time evolution of surface pressure and pi-A isotherms. The results show that SnO2 nanoparticles take 3 h to form a complete film at the air-hydrosol interface. Composite monolayers of SnO2 and arachidic acid were obtained by spreading arachidic acid onto a fresh hydrosol surface. Composite Y-type LB films were transferred from the air-hydrosol interface onto substrates, and characterized by FTIR, UV-vis, X-ray diffraction spectroscopy and TEM techniques. The results show that the composite films have good structure, with SnO2 nanoparticles uniformly and compactly distributed in the arachidate matrix. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
The reduction of Eu3+ to Eu2+ in SrB6O10 prepared in air by a high-temperature solid state reaction was studied. The luminescent properties of Eu2+ in this matrix show f-d broad band emission peaking at about 386 and 432 nm at room temperature. A charge compensation mechanism is proposed as a possible explanation. The luminescence of Eu3+ with f-f transitions was studied in this sample and reflected that the Eu3+ ion occupied a site with non-centro-symmetry. The ESR spectrum was used to detect the existence of Eu2+ in the samples. (C) 1998 Elsevier Science S.A.