990 resultados para Agroindustrial residue


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epithelial Na+ channel (ENaC) belongs to a new class of channel proteins called the ENaC/DEG superfamily involved in epithelial Na+ transport, mechanotransduction, and neurotransmission. The role of ENaC in Na+ homeostasis and in the control of blood pressure has been demonstrated recently by the identification of mutations in ENaC beta and gamma subunits causing hypertension. The function of ENaC in Na+ reabsorption depends critically on its ability to discriminate between Na+ and other ions like K+ or Ca2+. ENaC is virtually impermeant to K+ ions, and the molecular basis for its high ionic selectivity is largely unknown. We have identified a conserved Ser residue in the second transmembrane domain of the ENaC alpha subunit (alphaS589), which when mutated allows larger ions such as K+, Rb+, Cs+, and divalent cations to pass through the channel. The relative ion permeability of each of the alphaS589 mutants is related inversely to the ionic radius of the permeant ion, indicating that alphaS589 mutations increase the molecular cutoff of the channel by modifying the pore geometry at the selectivity filter. Proper geometry of the pore is required to tightly accommodate Na+ and Li+ ions and to exclude larger cations. We provide evidence that ENaC discriminates between cations mainly on the basis of their size and the energy of dehydration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amino acid composition of the protein from three strains of rat (Wistar, Zucker lean and Zucker obese), subjected to reference and high-fat diets has been used to determine the mean empirical formula, molecular weight and N content of whole-rat protein. The combined whole protein of the rat was uniform for the six experimental groups, containing an estimate of 17.3% N and a mean aminoacyl residue molecular weight of 103.7. This suggests that the appropriate protein factor for the calculation of rat protein from its N content should be 5.77 instead of the classical 6.25. In addition, an estimate of the size of the non-protein N mass in the whole rat gave a figure in the range of 5.5 % of all N. The combination of the two calculations gives a protein factor of 5.5 for the conversion of total N into rat protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel CaV2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant CaV2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The widely expressed protein Fas is a member of the tumour necrosis factor receptor family which can trigger apoptosis. However, Fas surface expression does not necessarily render cells susceptible to Fas ligand-induced death signals, indicating that inhibitors of the apoptosis-signalling pathway must exist. Here we report the characterization of an inhibitor of apoptosis, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues. The short form, FLIPs, contains two death effector domains and is structurally related to the viral FLIP inhibitors of apoptosis, whereas the long form, FLIP(L), contains in addition a caspase-like domain in which the active-centre cysteine residue is substituted by a tyrosine residue. FLIPs and FLIP(L) interact with the adaptor protein FADD and the protease FLICE, and potently inhibit apoptosis induced by all known human death receptors. FLIP(L) is expressed during the early stage of T-cell activation, but disappears when T cells become susceptible to Fas ligand-mediated apoptosis. High levels of FLIP(L) protein are also detectable in melanoma cell lines and malignant melanoma tumours. Thus FLIP may be implicated in tissue homeostasis as an important regulator of apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in lipid and glucose homeostasis, inflammation and wound healing. In addition to ligand binding, phosphorylation can also regulate PPARs; the biological effects of phosphorylation depend on the stimulus, the kinase, the PPAR isotype, the residue modified, the cell type and the promoter investigated. The study of this dual regulation mode, which allows PPARs to integrate signals conveyed by lipophilic ligands with those coming from the plasma membrane, may ultimately offer new therapeutic strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fluorescent oligopeptide substrate for the promastigote surface protease (PSP) of Leishmania was designed using the data reported for the substrate specificity of the enzyme (Bouvier, J., Schneider, P., Etges, R. J., and Bordier, C. 1990. Biochemistry 29, 10113-10119). The indole fluorescence of the tryptophan residue was efficiently quenched through resonance energy transfer by an N-terminal dansyl group located five amino acid residues away. The heptapeptide, dansyl-A-Y-L-K-K-W-V-NH2, was cleaved by PSP between the tyrosine and leucine residues with a kcat/Km ratio of 8.8 x 10(6) M-1sec-1. Hydrolysis by the enzyme results in a time-dependent increase of fluorescence intensity of 3.7-fold. Assays can be designed based on the tryptophan fluorescence at 360 nm or by individual product analyses using thin-layer chromatography. The synthetic substrate is readily cleaved by the metalloprotease at the surface of fixed promastigotes. The specificity and sensitivity of such internally quenched fluorescent peptide substrate will facilitate the identification of novel inhibitors for the enzyme and aid in detailed studies on its enzymology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between hypoxic stress, autophagy, and specific cell-mediated cytotoxicity remains unknown. This study shows that hypoxia-induced resistance of lung tumor to cytolytic T lymphocyte (CTL)-mediated lysis is associated with autophagy induction in target cells. In turn, this correlates with STAT3 phosphorylation on tyrosine 705 residue (pSTAT3) and HIF-1α accumulation. Inhibition of autophagy by siRNA targeting of either beclin1 or Atg5 resulted in impairment of pSTAT3 and restoration of hypoxic tumor cell susceptibility to CTL-mediated lysis. Furthermore, inhibition of pSTAT3 in hypoxic Atg5 or beclin1-targeted tumor cells was found to be associated with the inhibition Src kinase (pSrc). Autophagy-induced pSTAT3 and pSrc regulation seemed to involve the ubiquitin proteasome system and p62/SQSTM1. In vivo experiments using B16-F10 melanoma tumor cells indicated that depletion of beclin1 resulted in an inhibition of B16-F10 tumor growth and increased tumor apoptosis. Moreover, in vivo inhibition of autophagy by hydroxychloroquine in B16-F10 tumor-bearing mice and mice vaccinated with tyrosinase-related protein-2 peptide dramatically increased tumor growth inhibition. Collectively, this study establishes a novel functional link between hypoxia-induced autophagy and the regulation of antigen-specific T-cell lysis and points to a major role of autophagy in the control of in vivo tumor growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: This study aimed to identify the genetic defect in a family with idiopathic ventricular fibrillation (IVF) manifesting in childhood and adolescence. BACKGROUND: Although sudden cardiac death in the young is rare, it frequently presents as the first clinical manifestation of an underlying inherited arrhythmia syndrome. Gene discovery for IVF is important as it enables the identification of individuals at risk, because except for arrhythmia, IVF does not manifest with identifiable clinical abnormalities. METHODS: Exome sequencing was carried out on 2 family members who were both successfully resuscitated from a cardiac arrest. RESULTS: We characterized a family presenting with a history of ventricular fibrillation (VF) and sudden death without electrocardiographic or echocardiographic abnormalities at rest. Two siblings died suddenly at the ages of 9 and 10 years, and another 2 were resuscitated from out-of-hospital cardiac arrest with documented VF at ages 10 and 16 years, respectively. Exome sequencing identified a missense mutation affecting a highly conserved residue (p.F90L) in the CALM1 gene encoding calmodulin. This mutation was also carried by 1 of the siblings who died suddenly, from whom DNA was available. The mutation was present in the mother and in another sibling, both asymptomatic but displaying a marginally prolonged QT interval during exercise. CONCLUSIONS: We identified a mutation in CALM1 underlying IVF manifesting in childhood and adolescence. The causality of the mutation is supported by previous studies demonstrating that F90 mediates the direct interaction of CaM with target peptides. Our approach highlights the utility of exome sequencing in uncovering the genetic defect even in families with a small number of affected individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF) is a homotrimeric multifunctional proinflammatory cytokine that has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Current therapeutic strategies for targeting MIF focus on developing inhibitors of its tautomerase activity or modulating its biological activities using anti-MIF neutralizing antibodies. Herein we report a new class of isothiocyanate (ITC)-based irreversible inhibitors of MIF. Modification by benzyl isothiocyanate (BITC) and related analogues occurred at the N-terminal catalytic proline residue without any effect on the oligomerization state of MIF. Different alkyl and arylalkyl ITCs modified MIF with nearly the same efficiency as BITC. To elucidate the mechanism of action, we performed detailed biochemical, biophysical, and structural studies to determine the effect of BITC and its analogues on the conformational state, quaternary structure, catalytic activity, receptor binding, and biological activity of MIF. Light scattering, analytical ultracentrifugation, and NMR studies on unmodified and ITC-modified MIF demonstrated that modification of Pro1 alters the tertiary, but not the secondary or quaternary, structure of the trimer without affecting its thermodynamic stability. BITC induced drastic effects on the tertiary structure of MIF, in particular residues that cluster around Pro1 and constitute the tautomerase active site. These changes in tertiary structure and the loss of catalytic activity translated into a reduction in MIF receptor binding activity, MIF-mediated glucocorticoid overriding, and MIF-induced Akt phosphorylation. Together, these findings highlight the role of tertiary structure in modulating the biochemical and biological activities of MIF and present new opportunities for modulating MIF biological activities in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteins located on the surface of the pathogenic malaria parasite Plasmodium falciparum are objects of intensive studies due to their important role in the invasion of human cells and the accessibility to host antibodies thus making these proteins attractive vaccine candidates. One of these proteins, merozoite surface protein 3 (MSP3) represents a leading component among vaccine candidates; however, little is known about its structure and function. Our biophysical studies suggest that the 40 residue C-terminal domain of MSP3 protein self-assembles into a four-stranded alpha-helical coiled coil structure where alpha-helices are packed "side-by-side". A bioinformatics analysis provides an extended list of known and putative proteins from different species of Plasmodium which have such MSP3-like C-terminal domains. This finding allowed us to extend some conclusions of our studies to a larger group of the malaria surface proteins. Possible structural and functional roles of these highly conserved oligomerization domains in the intact merozoite surface proteins are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crop rotation and cover crop can be important means for enhancing crop yield in rainfed areas such as the lower Coastal Bend Region of Texas, USA. A trial was conducted in 1995 as part of a long-term cropping experiment (7 years) to investigate the effect of oat (Avena sativa L.) cover and rotation on soil water storage and yield of sorghum (Sorghum bicolor L.). The trial design was a RCB in a split-plot arrangement with four replicates. Rotation sequences were the main plots and oat cover crop the subplots. Cover crop reduced sorghum grain yield. This effect was attributed to a reduced concentration of available soil N and less soil water storage under this treatment. By delaying cover termination, the residue with a high C/N acted as an N sink through competition and/or immobilization instead of an N source to sorghum plants. Crop rotation had a significantly positive effect on sorghum yield and this effect was attributed to a significantly larger amount of N concentration under these rotation sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of coffee (Coffea arabica L.) population densities on the chemical and microbiological properties of an Oxisol. The work was carried out on soil samples of 0-20 cm depth originated from an experimental site which had been used for coffee tree spacing studies during 15 years, in Paraná State, Brazil. Eight coffee tree populations were evaluated: 7143, 3571, 2381, 1786, 1429, 1190, 1020, and 893 trees/ha. Increasing plant population increased soil pH, exchangeable Ca, Mg, K, extractable P, organic carbon, moisture content and coffee root colonization by vesicular arbuscular mycorrhizal fungi, and decreased exchangeable Al and microbial biomass. Such results were attributed to better erosion control, improved plant residue management and nutrient cycling, and decreased leaching losses. Increasing coffee tree population per unit of area has shown to be an important reclamation recuperation strategy for improving fertility of the acid soils in Paraná, Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucagon-like peptide-1(7-37) (GLP-1) is the most potent insulinotropic hormone characterized thus far. Because its activity is preserved in non-insulin-dependent diabetes mellitus (NIDDM) patients, it is considered a potential new drug for the treatment of this disease. One limitation in its therapeutic use is a short half-life in vivo (5 minutes), due in part to a fast degradation by the endoprotease dipeptidylpeptidase IV (DPPIV). Recently, it was reported that GLP-1 became resistant to DPPIV when the alanine residue at position 8 was replaced by a glycine (GLP-1-Gly8). We report here that this change slightly decreased the affinity of the peptide for its receptor (IC50, 0.41 +/- 0.14 and 1.39 +/- 0.61 nmol/L for GLP-1 and GLP-1-Gly8, respectively) but did not change the efficiency to stimulate accumulation of intracellular cyclic adenosine monophosphate (cAMP) (EC50, 0.25 +/- 0.05 and 0.36 +/- 0.06 nmol/L for GLP-1 and GLP-1-Gly8, respectively). Second, we demonstrate for the first time that this mutant has an improved insulinotropic activity compared with the wild-type peptide when tested in vivo in an animal model of diabetes. A single injection of 0.1 nmol GLP-1-Gly8 in diabetic mice fed a high-fat diet can correct fasting hyperglycemia and glucose intolerance for several hours, whereas the activity of 1 nmol GLP-1 vanishes a few minutes after injection. These actions were correlated with increased insulin and decreased glucagon levels. Interestingly, normoglycemia was maintained over a period that was longer than the predicted peptide half-life, suggesting a yet undescribed long-term effect of GLP-1-Gly8. GLP-1-Gly8 thus has a markedly improved therapeutic potential compared with GLP-1, since it can be used at much lower doses and with a more flexible schedule of administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPAR) and thyroid hormone receptors (TR) are members of the nuclear receptor superfamily, which regulate lipid metabolism and tissue differentiation. In order to bind to DNA and activate transcription, PPAR requires the formation of heterodimers with the retinoid X receptor (RXR). In addition to activating transcription through its own response elements, PPAR is able to selectively down-regulate the transcriptional activity of TR, but not vitamin D receptor. The molecular basis of this functional interaction has not been fully elucidated. By means of site-directed mutagenesis of hPPAR alpha we mapped its inhibitory action on TR to a leucine zipper-like motif in the ligand binding domain of PPAR, which is highly conserved among all subtypes of this receptor and mediates heterodimerization with RXR. Replacement of a single leucine by arginine at position 433 of hPPAR alpha (L433R) abolished heterodimerization of PPAR with RXR and consequently its trans-activating capacity. However, a similar mutation of a leucine residue to arginine at position 422 showed no alteration of heterodimerization, DNA binding, or transcriptional activation. The dimerization deficient mutant L433R was no longer able to inhibit TR action, demonstrating that the selective inhibitory effect of PPAR results from the competition for RXR as well as possibly for other TR-auxiliary proteins. In contrast, abolition of DNA binding by a mutation in the P-box of PPAR (C122S) did not eliminate the inhibition of TR trans-activation, indicating that competition for DNA binding is not involved. Additionally, no evidence for the formation of PPAR:TR heterodimers was found in co-immunoprecipitation experiments. In summary, we have demonstrated that PPAR selectively inhibits the transcriptional activity of TRs by competition for RXR and possibly non-RXR TR-auxiliary proteins. In contrast, this functional interaction is independent of the formation of PPAR:TR heterodimers or competition for DNA binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single amino acid substitution is the type of protein alteration most related to human diseases. Current studies seek primarily to distinguish neutral mutations from harmful ones. Very few methods offer an explanation of the final prediction result in terms of the probable structural or functional effect on the protein. In this study, we describe the use of three novel parameters to identify experimentally-verified critical residues of the TP53 protein (p53). The first two parameters make use of a surface clustering method to calculate the protein surface area of highly conserved regions or regions with high nonlocal atomic interaction energy (ANOLEA) score. These parameters help identify important functional regions on the surface of a protein. The last parameter involves the use of a new method for pseudobinding free-energy estimation to specifically probe the importance of residue side-chains to the stability of protein fold. A decision tree was designed to optimally combine these three parameters. The result was compared to the functional data stored in the International Agency for Research on Cancer (IARC) TP53 mutation database. The final prediction achieved a prediction accuracy of 70% and a Matthews correlation coefficient of 0.45. It also showed a high specificity of 91.8%. Mutations in the 85 correctly identified important residues represented 81.7% of the total mutations recorded in the database. In addition, the method was able to correctly assign a probable functional or structural role to the residues. Such information could be critical for the interpretation and prediction of the effect of missense mutations, as it not only provided the fundamental explanation of the observed effect, but also helped design the most appropriate laboratory experiment to verify the prediction results.