816 resultados para Aging parents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the compaction step on the (micro)structural features and aging behavior of polymer coated NdFeB-based bonded magnets is reported. Due to the fracture of the material during pressing, it is estimated an increase of at least 14% in the particles' area which is not coated. Such uncoated surfaces, when exposed to the environment, reduce the magnetic performance of the magnets aged/cured in air by 19% in the conditions evaluated in this investigation. Furthermore, XRD results interpreted by Rietveld analyses show a lattice parameter change in the tetragonal structure of the hard magnetic phase after pressing. Such change varies as a function of the height of the compacted part and it is ascribed to macro-elastic stress arising from the pressure distribution in the magnet. An aging/curing step during 24 h is able to relief such macro-elastic stress. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To investigate, in male Wistar rats, the effects of long-term moderate red wine (RW) consumption (equivalent to similar to 0.15 mg% resveratrol RS), or RS in low (L, 0.15 mg%) or high (H, 400 mg%) doses in chow. Background: Both RW and RS exhibit cardioprotection. RS extends lifespan in obese rats. It is unclear whether RW consumption or low-dose RS delay vascular aging and prolong life span in the absence of overt risk factors. Methods: Endpoints were aerobic performance, exercise capacity, aging biomarkers (p53,p16,p21, telomere length and telomerase activity in aortic homogenates), vascular reactivity. Data were compared with controls (C) given regular chow. Results: Expressions of p53 decreased similar to 50% similar to with RW and LRS (p < 0.05 vs. C), p16 by similar to 29% with RW (p < 0.05 vs. C) and p21 was unaltered. RW and LRS increased telomere length >6.5-fold vs. C, and telomerase activity increased with LRS and HRS. All treatments increased aerobic capacity (C 32.5 +/- 1.2, RW 38.7 + 1.7, LRS 38.5 + 1.6, HRS 38.3 + 1.8 mlO2 min(-1) kg(-1)), and RW or LRS also improved time of exercise tolerance vs. C (p < 0.05). Endothelium-dependent relaxation improved with all treatments vs. C. Life span, however, was unaltered with each treatment vs. C = 673 +/- 30 days, p = NS. Conclusions: RW and LRS can preserve vascular function indexes in normal rats, although not extending life span. These effects were translated into better aerobic performance and exercise capacity. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cockayne syndrome (CS) is a human premature aging disorder associated with neurological and developmental abnormalities, caused by mutations mainly in the CS group B gene (ERCC6). At the molecular level, CS is characterized by a deficiency in the transcription-couple DNA repair pathway. To understand the role of this molecular pathway in a pluripotent cell and the impact of CSB mutation during human cellular development, we generated induced pluripotent stem cells (iPSCs) from CSB skin fibroblasts (CSB-iPSC). Here, we showed that the lack of functional CSB does not represent a barrier to genetic reprogramming. However, iPSCs derived from CSB patients fibroblasts exhibited elevated cell death rate and higher reactive oxygen species (ROS) production. Moreover, these cellular phenotypes were accompanied by an up-regulation of TXNIP and TP53 transcriptional expression. Our findings suggest that CSB modulates cell viability in pluripotent stem cells, regulating the expression of TP53 and TXNIP and ROS production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophils are pivotal effector cells of innate immunity representing the first line of defense against aggression. They are the first cells to arrive at the site of the aggression, where they can directly eliminate the invading microorganisms. Their activation and recruitment into peripheral tissues is indispensable for host defense. With aging, there are alterations of the receptor by driven functions of human neutrophils as a decrease in the functional changes in signaling elicited by specific receptors, as CXCR1. We investigated the activation of neutrophils from elderly after the cells were cultivated with CXCL8. Although, CXCL8 induced elastase (ELA) secretion, data showed neither myeloperoxidase (MPO) activity nor production of IL-6, IL-10, GM-CSF by neutrophils from elderly compared with young individuals. On the other hand, in the presence of only LPS or LPS associated with CXCL8 neutrophils from elderly individuals, there were significant levels of IL-6, IL-10, GM-CSF but not MPO. These results indicate that neutrophils from elderly do not respond to CXCL8 stimulus, but they are activated by LPS to produce cytokines. However, MPO activity from elderly individuals was not different in the presence or absence of LPS and CXCL8

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the color stability of composites subjected to different periods of accelerated artificial aging (AAA). A polytetrafluorethylene matrix (10 x 2 mm) was used to fabricate 24 test specimens of three different composites (n=8): Tetric Ceram (Ivoclar/Vivadent); Filtek P90 and Z250 (3M ESPE), shade A3. After light activation for 20 s (FlashLite 1401), polishing and initial color readout (Spectrophotometer PCB 687; BYK Gardner), the test specimens were subjected to AAA (C-UV; Comexim), in 8-h cycles: 4 h exposure to UV-B rays at 50°C and 4 h condensation at 50°C. At the end of each cycle, color readouts were taken and the test ended when the mean value of ΔE attained a level ≥3.30. Tetric Ceram presented alteration in ΔE equal to 3.33 in the first aging cycle. For Filtek P90 and Z250, two (ΔE=3.60) and four (ΔE=3.42) AAA cycles were necessary. After each cycle, there was a reduction of luminosity in all the samples (ΔL). It was concluded that a short period of AAA was sufficient to promote clinically unacceptable color alteration in composites, and that this alteration was material-dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pineal gland, through melatonin, seems to be of fundamental importance in determining the metabolic adaptations of adipose and muscle tissues to physical training. Evidence shows that pinealectomized animals fail to develop adaptive metabolic changes in response to aerobic exercise and therefore do not exhibit the same performance as control-trained animals. The known prominent reduction in melatonin synthesis in aging animals led us to investigate the metabolic adaptations to physical training in aged animals with and without daily melatonin replacement. Male Wistar rats were assigned to four groups: sedentary control (SC), trained control (TC), sedentary treated with melatonin (SM), and trained treated with melatonin (TM). Melatonin supplementation lasted 16 wk, and the animals were subjected to exercise during the last 8 wk of the experiment. After euthanasia, samples of liver, muscle, and adipose tissues were collected for analysis. Trained animals treated with melatonin presented better results in the following parameters: glucose tolerance, physical capacity, citrate synthase activity, hepatic and muscular glycogen content, body weight, protein expression of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), and protein kinase activated by adenosine monophosphate (AMPK) in the liver, as well as the protein expression of the glucose transporter type 4 (GLUT4) and AMPK in the muscle. In conclusion, these results demonstrate that melatonin supplementation in aging animals is of great importance for the required metabolic adaptations induced by aerobic exercise. Adequate levels of circulating melatonin are, therefore, necessary to improve energetic metabolism efficiency, reducing body weight and increasing insulin sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theory of aging postulates that aging is a remodeling process where the body of survivors progressively adapts to internal and external damaging agents they are exposed to during several decades. Thus , stress response and adaptation mechanisms play a fundamental role in the aging process where the capability of adaptating effects, certainly, also is related the lifespan of each individual. A key gene linking aging to stress response is indeed p21, an induction of cyclin-dependent kinase inhibitor which triggers cell growth arrest associated with senescence and damage response and notably is involved in the up-regulation of multiple genes that have been associated with senescence or implicated in age-related . This PhD thesis project that has been performed in collaboration with the Roninson Lab at Ordway Research Institute in Albany, NY had two main aims: -the testing the hypothesis that p21 polymorphisms are involved in longevity -Evaluating age-associated differences in gene expression and transcriptional response to p21 and DNA damage In the first project, trough PCR-sequencing and Sequenom strategies, we we found out that there are about 30 polymorphic variants in the p21 gene. In addition, we found an haplotpype located in -5kb region of the p21 promoter whose frequency is ~ 2 fold higher in centenarians than in the general population (Large-scale analysis of haplotype frequencies is currently in progress). Functional studies I carried out on the promoter highilighted that the ―centenarian‖ haplotype doesn’t affect the basal p21 promoter activity or its response to p53. However, there are many other possible physiological conditions in which the centenarian allele of the p21 promoter may potentially show a different response (IL6, IFN,progesterone, vitamin E, Vitamin D etc). In the second part, project #2, trough Microarrays we seeked to evaluate the differences in gene expression between centenarians, elderly, young in dermal fibroblast cultures and their response to p21 and DNA damage. Microarray analysis of gene expression in dermal fibroblast cultures of individuals of different ages yielded a tentative "centenarian signature". A subset of genes that were up- or downregulated in centenarians showed the same response to ectopic expression of p21, yielding a putative "p21-centenarian" signature. Trough RQ-PCR (as well Microarrays studies whose analysis is in progress) we tested the DNA damage response of the p21-centenarian signature genes showing a correlation stress/aging in additional sets of young and old samples treated with p21-inducing drug doxorubicin thus finding for a subset of of them , a response to stress age-related.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aging is a physiological process characterized by a progressive decline of the “cellular homeostatic reserve”, refereed as the capability to respond suitably to exogenous and endogenous stressful stimuli. Due to their high energetic requests and post-mitotic nature, neurons are peculiarly susceptible to this phenomenon. However, the aged brain maintains a certain level of adaptive capacities and if properly stimulated may warrant a considerable functional recovery. Aim of the present research was to verify the plastic potentialities of the aging brain of rats subjected to two kind of exogenous stimuli: A) the replacement of the standard diet with a ketogenic regimen (the change forces the brain to use ketone bodies (KB) in alternative to glucose to satisfy the energetic needs) and B) a behavioural task able to induce the formation of inhibitory avoidance memory. A) Fifteen male Wistar rats of 19 months of age were divided into three groups (average body weight pair-matched), and fed for 8 weeks with different dietary regimens: i) diet containing 10% medium chain triglycerides (MCT); ii) diet containing 20% MCT; iii) standard commercial chow. Five young (5 months of age) and five old (26-27 months of age) animals fed with the standard diet were used as further controls. The following morphological parameters reflecting synaptic plasticity were evaluated in the stratum moleculare of the hippocampal CA1 region (SM CA1), in the outer molecular layer of the hippocampal dentate gyrus (OML DG), and in the granule cell layer of the cerebellar cortex (GCL-CCx): average area (S), numeric density (Nvs), and surface density (Sv) of synapses, and average volume (V), numeric density (Nvm), and volume density (Vv) of synaptic mitochondria. Moreover, succinic dehydrogenase (SDH) activity was cytochemically determined in Purkinje cells (PC) and V, Nvm, Vv, and cytochemical precipitate area/mitochondrial area (R) of SDH-positive mitochondria were evaluated. In SM CA1, MCT-KDs induced the early appearance of the morphological patterns typical of old animals: higher S and V, and lower Nvs and Nvm. On the contrary, in OML DG, Sv and Vv of MCT-KDs-fed rats were higher (as a result of higher Nvs and Nvm) vs. controls; these modifications are known to improve synaptic function and metabolic supply. The opposite effects of MCT-KDs might reflect the different susceptibility of these brain regions to the aging processes: OML DG is less vulnerable than SM CA1, and the reactivation of ketone bodies uptake and catabolism might occur more efficiently in this region, allowing the exploitation of their peculiar metabolic properties. In GCL-CCx, the results described a new scenario in comparison to that found in the hippocampal formation: 10%MCT-KD induced the early appearance of senescent patterns (decreased Nvs and Nvm; increased V), whereas 20%MCT-KD caused no changes. Since GCL-CCx is more vulnerable to age than DG, and less than CA1, these data further support the hypothesis that MCT-KDs effects in the aging brain critically depend on neuronal vulnerability to age, besides MCT percentage. Regarding PC, it was decided to evaluate only the metabolic effect of the dietetic regimen (20%MCT-KD) characterized by less side effects. KD counteracted age-related decrease in numeric density of SDH-positive mitochondria, and enhanced their energetic efficiency (R was significantly higher in MCT-KD-fed rats vs. all the controls). Since it is well known that Purkinje and dentate gyrus cells are less vulnerable to aging than CA1 neurons, these results corroborate our previous hypothesis. In conclusion, the A) experimental line provides the first evidence that morphological and functional parameters reflecting synaptic plasticity and mitochondrial metabolic competence may be modulated by MCT-KDs in the pre-senescent central nervous system, and that the effects may be heterogeneous in different brain regions. MCT-KDs seem to supply high energy metabolic intermediates and to be beneficial (“anti-aging”) for those neurons that maintain the capability to exploit them. This implies risks but also promising potentialities for the therapeutic use of these diets during aging B) Morphological parameters of synapses and synaptic mitochondria in SM CA1 were investigated in old (26-27 month-old) female Wistar rats following a single trial inhibitory avoidance task. In this memory protocol animals learn to avoid a dark compartment in which they received a mild, inescapable foot-shock. Rats were tested 3 and 6 or 9 hours after the training, divided into good and bad responders according to their performance (retention times above or below 100 s, respectively) and immediately sacrificed. Nvs, S, Sv, Nvm, V, and Vv were evaluated. In the good responder group, the numeric density of synapses and mitochondria was significantly higher and the average mitochondrial volume was significantly smaller 9 hours vs. 6 hours after the training. No significant differences were observed among bad responders. Thus, better performances in passive avoidance memory task are correlated with more efficient plastic remodeling of synaptic contacts and mitochondria in hippocampal CA1. These findings indicate that maintenance of synaptic plastic reactivity during aging is a critical requirement for preserving long-term memory consolidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is part of the EU Integrated Project “GEHA – Genetics of Healthy Aging” (Franceschi C et al., Ann N Y Acad Sci. 1100: 21-45, 2007), whose aim is to identify genes involved in healthy aging and longevity, which allow individuals to survive to advanced age in good cognitive and physical function and in the absence of major age-related diseases. Aims The major aims of this thesis were the following: 1. to outline the recruitment procedure of 90+ Italian siblings performed by the recruiting units of the University of Bologna (UNIBO) and Rome (ISS). The procedures related to the following items necessary to perform the study were described and commented: identification of the eligible area for recruitment, demographic aspects related to the need of getting census lists of 90+siblings, mail and phone contact with 90+ subjects and their families, bioethics aspects of the whole procedure, standardization of the recruitment methodology and set-up of a detailed flow chart to be followed by the European recruitment centres (obtainment of the informed consent form, anonimization of data by using a special code, how to perform the interview, how to collect the blood, how to enter data in the GEHA Phenotypic Data Base hosted at Odense). 2. to provide an overview of the phenotypic characteristics of 90+ Italian siblings recruited by the recruiting units of the University of Bologna (UNIBO) and Rome (ISS). The following items were addressed: socio-demographic characteristics, health status, cognitive assessment, physical conditions (handgrip strength test, chair-stand test, physical ability including ADL, vision and hearing ability, movement ability and doing light housework), life-style information (smoking and drinking habits) and subjective well-being (attitude towards life). Moreover, haematological parameters collected in the 90+ sibpairs as optional parameters by the Bologna and Rome recruiting units were used for a more comprehensive evaluation of the results obtained using the above mentioned phenotypic characteristics reported in the GEHA questionnaire. 3. to assess 90+ Italian siblings as far as their health/functional status is concerned on the basis of three classification methods proposed in previous studies on centenarians, which are based on: • actual functional capabilities (ADL, SMMSE, visual and hearing abilities) (Gondo et al., J Gerontol. 61A (3): 305-310, 2006); • actual functional capabilities and morbidity (ADL, ability to walk, SMMSE, presence of cancer, ictus, renal failure, anaemia, and liver diseases) (Franceschi et al., Aging Clin Exp Res, 12:77-84, 2000); • retrospectively collected data about past history of morbidity and age of disease onset (hypertension, heart disease, diabetes, stroke, cancer, osteopororis, neurological diseases, chronic obstructive pulmonary disease and ocular diseases) (Evert et al., J Gerontol A Biol Sci Med Sci. 58A (3): 232-237, 2003). Firstly these available models to define the health status of long-living subjects were applied to the sample and, since the classifications by Gondo and Franceschi are both based on the present functional status, they were compared in order to better recognize the healthy aging phenotype and to identify the best group of 90+ subjects out of the entire studied population. 4. to investigate the concordance of health and functional status among 90+ siblings in order to divide sibpairs in three categories: the best (both sibs are in good shape), the worst (both sibs are in bad shape) and an intermediate group (one sib is in good shape and the other is in bad shape). Moreover, the evaluation wanted to discover which variables are concordant among siblings; thus, concordant variables could be considered as familiar variables (determined by the environment or by genetics). 5. to perform a survival analysis by using mortality data at 1st January 2009 from the follow-up as the main outcome and selected functional and clinical parameters as explanatory variables. Methods A total of 765 90+ Italian subjects recruited by UNIBO (549 90+ siblings, belonging to 258 families) and ISS (216 90+ siblings, belonging to 106 families) recruiting units are included in the analysis. Each subject was interviewed according to a standardized questionnaire, comprising extensively utilized questions that have been validated in previous European studies on elderly subjects and covering demographic information, life style, living conditions, cognitive status (SMMSE), mood, health status and anthropometric measurements. Moreover, subjects were asked to perform some physical tests (Hand Grip Strength test and Chair Standing test) and a sample of about 24 mL of blood was collected and then processed according to a common protocol for the preparation and storage of DNA aliquots. Results From the analysis the main findings are the following: - a standardized protocol to assess cognitive status, physical performances and health status of European nonagenarian subjects was set up, in respect to ethical requirements, and it is available as a reference for other studies in this field; - GEHA families are enriched in long-living members and extreme survival, and represent an appropriate model for the identification of genes involved in healthy aging and longevity; - two simplified sets of criteria to classify 90+ sibling according to their health status were proposed, as operational tools for distinguishing healthy from non healthy subjects; - cognitive and functional parameters have a major role in categorizing 90+ siblings for the health status; - parameters such as education and good physical abilities (500 metres walking ability, going up and down the stairs ability, high scores at hand grip and chair stand tests) are associated with a good health status (defined as “cognitive unimpairment and absence of disability”); - male nonagenarians show a more homogeneous phenotype than females, and, though far fewer in number, tend to be healthier than females; - in males the good health status is not protective for survival, confirming the male-female health survival paradox; - survival after age 90 was dependent mainly on intact cognitive status and absence of functional disabilities; - haemoglobin and creatinine levels are both associated with longevity; - the most concordant items among 90+ siblings are related to the functional status, indicating that they contain a familiar component. It is still to be investigated at what level this familiar component is determined by genetics or by environment or by the interaction between genetics, environment and chance (and at what level). Conclusions In conclusion, we could state that this study, in accordance with the main objectives of the whole GEHA project, represents one of the first attempt to identify the biological and non biological determinants of successful/unsuccessful aging and longevity. Here, the analysis was performed on 90+ siblings recruited in Northern and Central Italy and it could be used as a reference for others studies in this field on Italian population. Moreover, it contributed to the definition of “successful” and “unsuccessful” aging and categorising a very large cohort of our most elderly subjects into “successful” and “unsuccessful” groups provided an unrivalled opportunity to detect some of the basic genetic/molecular mechanisms which underpin good health as opposed to chronic disability. Discoveries in the topic of the biological determinants of healthy aging represent a real possibility to identify new markers to be utilized for the identification of subgroups of old European citizens having a higher risk to develop age-related diseases and disabilities and to direct major preventive medicine strategies for the new epidemic of chronic disease in the 21st century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related physiological changes in the gastrointestinal tract, as well as modification in lifestyle, nutritional behaviour, and functionality of the host immune system, inevitably affect the gut microbiota. The study presented here is focused on the application and comparison of two different microarray approaches for the characterization of the human gut microbiota, the HITChip and the HTF-Microb.Array, with particular attention to the effects of the aging process on the composition of this ecosystem. By using the Human Intestinal Tract Chip (HITChip), recently developed at the Wageningen University, The Netherland, we explored the age-related changes of gut microbiota during the whole adult lifespan, from young adults, through elderly to centenarians. We observed that the microbial composition and diversity of the gut ecosystem of young adults and seventy-years old people is highly similar but differs significantly from that of the centenarians. After 100 years of symbiotic association with the human host, the microbiota is characterized by a rearrangement in the Firmicutes population and an enrichment of facultative anaerobes. The presence of such a compromised microbiota in the centenarians is associated with an increased inflammation status, also known as inflamm-aging, as determined by a range of peripheral blood inflammatory markers. In parallel, we overtook the development of our own phylogenetic microarray with a lower number of targets, aiming the description of the human gut microbiota structure at high taxonomic level. The resulting chip was called High Taxonomic level Fingerprinting Microbiota Array (HTF-Microb.Array), and was based on the Ligase Detection Reaction (LDR) technology, which allowed us to develop a fast and sensitive tool for the fingerprint of the human gut microbiota in terms of presence/absence of the principal groups. The validation on artificial DNA mixes, as well as the pilot study involving eight healthy young adults, demonstrated that the HTF-Microb.Array can be used to successfully characterize the human gut microbiota, allowing us to obtain results which are in approximate accordance with the most recent characterizations. Conversely, the evaluation of the relative abundance of the target groups on the bases of the relative fluorescence intensity probes response still has some hindrances, as demonstrated by comparing the HTF.Microb.Array and HITChip high taxonomic level fingerprints of the same centenarians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le problematiche ambientali e socio – economiche legate alla costruzione di nuove infrastrutture viarie, impongono la progettazione e costruzione di strade che combinino ad elevati standard prestazionali, la riduzione dell’impatto ambientale in fase realizzativa e manutentiva. Quanto detto avvalora il crescente utilizzo di materiali bituminosi modificati con polimeri ed additivati con cere. I primi conferiscono alla miscela maggiore elastoplasticità, incrementandone la durabilità e la resistenza a fatica. Nei secondi la presenza del materiale paraffinico contribuisce a ridurre la viscosità del bitume, il che consente il notevole abbassamento della temperatura di produzione e stesa della miscela. Numerosi studi inoltre hanno dimostrato che le caratteristiche meccaniche della pavimentazione sono fortemente influenzate dal grado di ossidazione delle componenti organiche del bitume, ovvero dal fenomeno dell’invecchiamento o aging. Risulta pertanto fondamentale affiancare allo studio reologico del bitume, prove di simulazione dell’ invecchiamento nel breve e lungo termine. Nel corso della seguente ricerca si provvederà pertanto ad analizzare leganti modificati ed additivati secondo la teoria della viscoelasticità, simulando le reali condizioni di carico ed invecchiamento alle quali il bitume è sottoposto. Tutte le prove di caratterizzazione reologica avanzata prevederanno l’utilizzo del DSR (Dynamic Shear Rheometer) in varie configurazioni di prova e si simulerà l’invecchiamento a breve termine mediante RTFOT (Rolling thin film oven test). Si proporrà inoltre una nuova procedura di aging invecchiando il bitume alla temperatura di equiviscosità o Twork , ovvero a quel valore della temperatura tale per cui, in fase di messa in opera, si avrà una distribuzione molecolare omogenea del modificante all’interno del bitume. Verranno quindi effettuate ulteriori prove reologiche sui leganti invecchiati a tale temperatura. Si darà infine supporto ai risultati della ricerca effettuando prove chimiche con la tecnica analitica FTIR (Fourier Transform Infrared Spectroscopy), analizzando i cambiamenti molecolari avvenuti nel bitume a seguito dell’aggiunta del modificante e dell’invecchiamento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current design life of nuclear power plant (NPP) could potentially be extended to 80 years. During this extended plant life, all safety and operationally relevant Instrumentation & Control (I&C) systems are required to meet their designed performance requirements to ensure safe and reliable operation of the NPP, both during normal operation and subsequent to design base events. This in turn requires an adequate and documented qualification and aging management program. It is known that electrical insulation of I&C cables used in safety related circuits can degrade during their life, due to the aging effect of environmental stresses, such as temperature, radiation, vibration, etc., particularly if located in the containment area of the NPP. Thus several condition monitoring techniques are required to assess the state of the insulation. Such techniques can be used to establish a residual lifetime, based on the relationship between condition indicators and ageing stresses, hence, to support a preventive and effective maintenance program. The object of this thesis is to investigate potential electrical aging indicators (diagnostic markers) testing various I&C cable insulations subjected to an accelerated multi-stress (thermal and radiation) aging.