850 resultados para Acute respiratory tract disease


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. The prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis is greatest in winter. We investigated how M. catarrhalis uses the physiologic exposure to cold air to regulate pivotal survival systems that may contribute to M. catarrhalis virulence. RESULTS In this study we used the RNA-seq techniques to quantitatively catalogue the transcriptome of M. catarrhalis exposed to a 26 °C cold shock or to continuous growth at 37 °C. Validation of RNA-seq data using quantitative RT-PCR analysis demonstrated the RNA-seq results to be highly reliable. We observed that a 26 °C cold shock induces the expression of genes that in other bacteria have been related to virulence a strong induction was observed for genes involved in high affinity phosphate transport and iron acquisition, indicating that M. catarrhalis makes a better use of both phosphate and iron resources after exposure to cold shock. We detected the induction of genes involved in nitrogen metabolism, as well as several outer membrane proteins, including ompA, m35-like porin and multidrug efflux pump (acrAB) indicating that M. catarrhalis remodels its membrane components in response to downshift of temperature. Furthermore, we demonstrate that a 26 °C cold shock enhances the induction of genes encoding the type IV pili that are essential for natural transformation, and increases the genetic competence of M. catarrhalis, which may facilitate the rapid spread and acquisition of novel virulence-associated genes. CONCLUSION Cold shock at a physiologically relevant temperature of 26 °C induces in M. catarrhalis a complex of adaptive mechanisms that could convey novel pathogenic functions and may contribute to enhanced colonization and virulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The respiratory tract is an attractive target organ for novel diagnostic and therapeutic applications with nano-sized carriers, but their immune effects and interactions with key resident antigen-presenting cells (APCs) such as dendritic cells (DCs) and alveolar macrophages (AMs) in different anatomical compartments remain poorly understood. Polystyrene particles ranging from 20 nm to 1,000 nm were instilled intranasally in BALB/c mice, and their interactions with APC populations in airways, lung parenchyma, and lung-draining lymph nodes (LDLNs) were examined after 2 and 24 hours by flow cytometry and confocal microscopy. In the main conducting airways and lung parenchyma, DC subpopulations preferentially captured 20-nm particles, compared with 1,000-nm particles that were transported to the LDLNs by migratory CD11blow DCs and that were observed in close proximity to CD3+ T cells. Generally, the uptake of particles increased the expression of CD40 and CD86 in all DC populations, independent of particle size, whereas 20-nm particles induced enhanced antigen presentation to CD4+ T cells in LDLNs in vivo. Despite measurable uptake by DCs, the majority of particles were taken up by AMs, irrespective of size. Confocal microscopy and FACS analysis showed few particles in the main conducting airways, but a homogeneous distribution of all particle sizes was evident in the lung parenchyma, mostly confined to AMs. Particulate size as a key parameter determining uptake and trafficking therefore determines the fate of inhaled particulates, and this may have important consequences in the development of novel carriers for pulmonary diagnostic or therapeutic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mucus secretion is an important protective mechanism for the luminal lining of open tubular organs, but mucin overproduction in the respiratory tract can exacerbate the inflammatory process and cause airway obstruction. Production of MUC5AC, a predominant gel-forming mucin secreted by airway epithelia, can be induced by various inflammatory mediators such as prostaglandins. The two major prostaglandins involved in inflammation are PGE(2) and PGF(2alpha). PGE(2)-induced mucin production has been well studied, but the effect of PGF(2alpha) on mucin production remains poorly understood. To elucidate the effect and underlying mechanism of PGF(2alpha) on MUC5AC production, we investigated the signal transduction of PGF(2alpha) associated with this effect using normal human tracheobronchial epithelial cells. Our results demonstrated that PGF(2alpha) induces MUC5AC overproduction via a signaling cascade involving protein kinase C, ERK, p90 ribosomal S6 protein kinase, and CREB. The regulation of PGF(2alpha)-induced MUC5AC expression by CREB was further confirmed by cAMP response element-dependent MUC5AC promoter activity and by interaction between CREB and MUC5AC promoter. The abrogation of all downstream signaling activities via suppression of each signaling molecule along the pathway indicates that a single pathway from PGF(2alpha) receptor to CREB is responsible for inducing MUC5AC overproduction. As CREB also mediates mucin overproduction induced by PGE(2) and other inflammatory mediators, our findings have important clinical implications for the management of airway mucus hypersecretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the constant expansion within the nanotechnology industry in the last decade, nanomaterials are omnipresent in society today. Nanotechnology-based products have numerous different applications ranging from electronic (e.g., advanced memory chips) to industrial (e.g., coatings or composites) to biomedical (e.g., drug delivery systems, diagnostics). Although these new nanomaterials can be found in many "everyday" products, their effects on the human body have still to be investigated in order to identify not only their risk, but also their potential benefits towards human health. Since the lung is commonly thought to be the main portal of entry into the human body for nanomaterials released within the environment, this review will attempt to summarise the current knowledge and understanding of how nanomaterials interact with the respiratory tract. Furthermore, the advantages and disadvantages of different experimental model systems that are commonly used to study this exposure route to the human body will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meningitis is the most common serious manifestation of infection of the central nervous system. Inflammatory involvement of the subarachnoid space with meningeal irritation leads to the classical triad of headache, fever, and meningism, and to a pleocytosis of the cerebrospinal fluid (CSF). Meningitis is clinically categorized into an acute and chronic disease based on the acuity of symptoms. Acute meningitis develops over hours to days, while in chronic meningitis symptoms evolve over days or even weeks. Aseptic meningitis, in which no bacterial pathogen can be isolated by routine cultures, can mimic bacterial meningitis, but the disease has a much more favorable prognosis. Many cases of aseptic meningitis are caused by viruses, primarily enteroviruses, but bacteria and noninfectious etiologies also cause meningitis with negative cultures. Symptoms of meningeal inflammation with CSF pleocytosis that persist for more than 4 weeks define the chronic meningitis syndrome. The diagnosis is based on the patient history, clinical evidence of meningitis, CSF examination, and often imaging studies. The differential diagnosis is broad, and the predominant CSF cell type can provide clues as to the underlying disease. Empiric therapy is primarily based on the age of the patient, with modifications if there are positive findings on CSF gram stain or if the patient presents with special risk factors. In patients with chronic meningitis, a definite diagnosis is often not available or delayed for days, in which case empiric therapy may have to be initiated. It is important to cover the treatable causes of meningitis, for which the outcome is poor if treatment is delayed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chapter 1 gives an overview about Streptococcus pneumoniae, its role as a human pathogen and its virulence factors. Additionally, biofilm development and its relevance in clinics are introduced, and the innate immune response to pneumococcus as well as bacterial-viral interactions in the upper respiratory tract are also discussed. Chapter 2 emphasizes the three main topics of this thesis: the role of capsule and pneumolysin in the immune response in the respiratory tract, biofilm formation of S. pneumoniae serotypes and commensal streptococci in vitro, and host innate immune responses to RSV and S. pneumoniae during in vitro co-infections. Aims and hypotheses are provided here. Chapter 3 is divided into two parts: First, the release of the pro-inflammatory cytokines CXCL8 and IL-6 from the human pharyngeal epithelial cell line Detroit 562 and from human bronchial epithelial cells (iHBEC) is described in response to S. pneumoniae. Capsule was shown to suppress the release of both cytokines in both cell lines tested, but release was much less from iHBEC cells. During intranasal colonization of mice, suppression of CXCL8 release by the capsule was also observed in vivo, but the effect was only measured in the absence of pneumolysin. Long term, stable nasopharyngeal carriage in a mouse model resulted in the dissemination of nonencapsulated pneumococci into the lungs, whereas encapsulated strains remained in the nasopharynx. The S. pneumoniae capsule thus plays a role in modulation of the pro-inflammatory immune response in the respiratory tract. Second, results on immunological cells and immune regulation in a long term, stable nasopharyngeal carriage mouse model are presented. Mice were infected with encapsulated or nonencapsulated pneumococcal strains, and after 1, 3, 8 and 15 days, were sacrificed to evaluate the numbers of CD45+ cells, neutrophils, macrophages, FoxP3+ regulatory T-cells and CD3+ T-cells in the nasal mucosa as well as the amount of secreted IL-10 in the nasopharynx. Nasopharyngeal colonization which is effectively silent resulted in the stimulation of FoxP3+ regulatory T-cells and IL-10 release associated with immune homeostasis, whereas lung infiltration was required to increase the number of neutrophils and macrophages resulting in a stronger innate immune response in the nasal mucosa. Chapter 4 contains results of mono- and co-stimulation using RSV and pneumococci or pneumococcal virulence factors on the human bronchial epithelial cell line BEAS-2B. An increase in CXCL8 and IL-6 levels was measured for mixed stimulations of RSV and pneumococcus when encapsulated bacteria were used. Increasing pneumolysin concentrations resulted in enhanced CXCL8 levels. Priming of bronchial epithelial cells with RSV opens the door for more severe pneumococcal infections. Chapter 5 is composed of two parts: The first part describes initial biofilm formation of serotypes 6B and 7F in a static model in vitro. Biofilms of both serotypes contained SCVs, but only serotype 6B increased in SCV formation between 16 and 65h of incubation. SCV stability was tested by passaging clones in complex medium, where SCV production is not associated with advantages in growth. Serotype 6B lost the SCV phenotype indicating a fast adaptation to a changing nutritional environment. Limitations of our in vitro model are discussed. The second part is about initial biofilm formation of mixed culture growth of S. pneumoniae with commensal streptococci. Competition dominates this process. S. oralis and pneumococcus compete for nutrients, whereas mixed species growth of S. mitis or S. pseudopneumoniae with S. pneumoniae is mainly influenced by other factors. In Chapter 6 the findings of chapters 3, 4 and 5 are discussed and an outlook for further studies is provided. Chapters 7, 8, 9, 10 and 11 contain the references, the acknowledgements, the curriculum vitae, the appendix and the declaration of originality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To assess the effectiveness of implementing guidelines, coupled with individual feedback, on antibiotic prescribing behaviour of primary care physicians in Switzerland. METHODS One hundred and forty general practices from a representative Swiss sentinel network of primary care physicians participated in this cluster-randomized prospective intervention study. The intervention consisted of providing guidelines on treatment of respiratory tract infections (RTIs) and uncomplicated lower urinary tract infections (UTIs), coupled with sustained, regular feedback on individual antibiotic prescription behaviour during 2 years. The main aims were: (i) to increase the percentage of prescriptions of penicillins for all RTIs treated with antibiotics; (ii) to increase the percentage of trimethoprim/sulfamethoxazole prescriptions for all uncomplicated lower UTIs treated with antibiotics; (iii) to decrease the percentage of quinolone prescriptions for all cases of exacerbated COPD (eCOPD) treated with antibiotics; and (iv) to decrease the proportion of sinusitis and other upper RTIs treated with antibiotics. The study was registered at ClinicalTrials.gov (NCT01358916). RESULTS While the percentage of antibiotics prescribed for sinusitis or other upper RTIs and the percentage of quinolones prescribed for eCOPD did not differ between the intervention group and the control group, there was a significant increase in the percentage of prescriptions of penicillins for all RTIs treated with antibiotics [57% versus 49%, OR = 1.42 (95% CI 1.08-1.89), P = 0.01] and in the percentage of trimethoprim/sulfamethoxazole prescriptions for all uncomplicated lower UTIs treated with antibiotics [35% versus 19%, OR = 2.16 (95% CI 1.19-3.91), P = 0.01] in the intervention group. CONCLUSIONS In our setting, implementing guidelines, coupled with sustained individual feedback, was not able to reduce the proportion of sinusitis and other upper RTIs treated with antibiotics, but increased the use of recommended antibiotics for RTIs and UTIs, as defined by the guidelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic predispositions for guttural pouch tympany, recurrent laryngeal neuropathy and recurrent airway obstruction (RAO) are well documented. There is also evidence that exercise-induced pulmonary haemorrhage and infectious diseases of the respiratory tract in horses have a genetic component. The clinical expression of equine respiratory diseases with a genetic basis results from complex interactions between the environment and the genetic make-up of each individual horse. The genetic effects are likely to be due to variations in several genes, i.e. they are polygenic. It is therefore unlikely that single gene tests will be diagnostically useful in these disorders. Genetic profiling panels, combining several genetic factors with an assessment of environmental risk factors, may have greater value, but much work is still needed to uncover diagnostically useful genetic markers or even causative variants for equine respiratory diseases. Nonetheless, chromosomal regions associated with guttural pouch tympany, recurrent laryngeal neuropathy and RAO have been identified. The association of RAO with other hypersensitivities and with resistance to intestinal parasites requires further study. This review aims to provide an overview of the available data and current thoughts on the genetics of equine airway diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To evaluate indications for and outcome of perineal urethrostomy in cats. METHODS: The medical records of 59 cats that had undergone perineal urethrostomy were evaluated. Short-term follow up information (for a period of four weeks following surgery) was available for all of the cats. Long-term follow up information (for a period of at least four months) was available for 39 cats. RESULTS: Early complications occurred in 25.4 per cent of cats and late complications were observed in 28.2 per cent of cats. The most frequent late complication was recurring bacterial urinary tract Infection. CLINICAL SIGNIFICANCE: Despite frequent complications and recurring signs of lower urinary tract disease, 32.2 per cent of the cats had a disease-free long-term outcome (mean four years, median 3.9 years), and 88.6 per cent of clients interviewed thought that their cats had a good quality of life after surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Understanding the composition and dynamics of the upper respiratory tract microbiota in healthy infants is a prerequisite to investigate the role of the microbiota in patients with respiratory diseases. This is especially true in early life, when the immune system is in development. OBJECTIVE We sought to describe the dynamics of the upper respiratory tract microbiota in healthy infants within the first year of life. METHODS After exclusion of low-quality samples, microbiota characterization was performed by using 16S rDNA pyrosequencing of 872 nasal swabs collected biweekly from 47 unselected infants. RESULTS Bacterial density increased and diversity decreased within the first year of life (R(2) = 0.95 and 0.73, respectively). A distinct profile for the first 3 months of life was found with increased relative abundances of Staphlyococcaceae and Corynebacteriaceae (exponential decay: R(2) = 0.94 and 0.96, respectively). In addition, relative bacterial abundance and composition differed significantly from summer to winter months. The individual composition of the microbiota changed with increasing time intervals between samples and was best modeled by an exponential function (R(2) = 0.97). Within-subject dissimilarity in a 2-week time interval was consistently lower than that between subjects, indicating a personalized microbiota. CONCLUSION This study reveals age and seasonality as major factors driving the composition of the nasal microbiota within the first year of life. A subject's microbiota is personalized but dynamic throughout the first year. These data are indispensable to interpretation of cross-sectional studies and investigation of the role of the microbiota in both healthy subjects and patients with respiratory diseases. They might also serve as a baseline for future intervention studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perioperative management of patients with mediastinal masses is a special clinical challenge in our field. Even though regional anaesthesia is normally the first choice, in some cases it is not feasible due to the method of operation. In these cases general anaesthesia is the second option but can lead to respiratory and haemodynamic decompensation due to tumor-associated compression syndrome (mediastinal mass syndrome). The appropriate treatment begins with the preoperative risk classification on the basis of clinical and radiological findings. In addition to anamnesis, chest radiograph, and CT, dynamical methods (e.g. pneumotachography and echocardiography) should be applied to verify possible intraoperative compression syndromes. The induction of general anaesthesia is to be realized in awake-fiberoptic intubation with introduction of the tube via nasal route while maintaining the spontaneous breathing of the patient. The anaesthesia continues with short effective agents applied inhalative or iv. If possible from the point of operation, agents of muscle relaxation are not to be applied. If the anaesthesia risk is classified as uncertain or unsafe, depending on the location of tumor compression (tracheobronchial tree, pulmonary artery, superior vena cava), alternative techniques of securing the respiratory tract (different tubes, rigid bronchoscope) and cardiopulmonary bypass with extracorporal oxygen supply are prepared. For patients with severe clinical symptoms and extensive mediastinal mass, the preoperative cannulation of femoral vessels is also recommended. In addition to fulfilling technical and personnel requirements, an interdisciplinary cooperation of participating fields is the most important prerequisite for the optimal treatment of patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunological homeostasis in the respiratory tract is thought to require balanced interactions between networks of dendritic cell (DC) subsets in lung microenvironments in order to regulate tolerance or immunity to inhaled antigens and pathogens. Influenza A virus (IAV) poses a serious threat of long-term disruption to this balance through its potent pro-inflammatory activities. In this study, we have used a BALB/c mouse model of A/PR8/34 H1N1 Influenza Type A Virus infection to examine the effects of IAV on respiratory tissue DC subsets during the recovery phase following clearance of the virus. In adult mice, we found differences in the kinetics and activation states of DC residing in the airway mucosa (AMDC) compared to those in the parenchymal lung (PLDC) compartments. A significant depletion in the percentage of AMDC was observed at day 4 post-infection that was associated with a change in steady-state CD11b+ and CD11b- AMDC subset frequencies and significantly elevated CD40 and CD80 expression and that returned to baseline by day 14 post-infection. In contrast, percentages and total numbers of PLDC were significantly elevated at day 14 and remained so until day 21 post-infection. Accompanying this was a change in CD11b+and CD11b- PLDC subset frequencies and significant increase in CD40 and CD80 expression at these time points. Furthermore, mice infected with IAV at 4 weeks of age showed a significant increase in total numbers of PLDC, and increased CD40 expression on both AMDC and PLDC, when analysed as adults 35 days later. These data suggest that the rate of recovery of DC populations following IAV infection differs in the mucosal and parenchymal compartments of the lung and that DC populations can remain disrupted and activated for a prolonged period following viral clearance, into adulthood if infection occurred early in life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES/HYPOTHESIS Study of the clinical evolution of a primary ear, nose, and throat infection complicated by septic thrombophlebitis of the internal jugular vein. STUDY DESIGN Retrospective case-control study. PATIENTS AND METHODS From 1998 to 2010, 23 patients at our institution were diagnosed with a septic thrombosis of the internal jugular vein. Diagnostics included microbiologic analysis and imaging such as computed tomography, magnetic resonance imaging, and ultrasound. Therapy included broad-spectrum antibiotics, surgery of the primary infectious lesion, and postoperative anticoagulation. The patients were retrospectively analyzed. RESULTS The primary infection sites were found in the middle ear (11), oropharynx (8), sinus (3), and oral cavity (1). Fourteen patients needed intensive care unit treatment for a mean duration of 6 days. Seven patients were intubated, and two developed severe acute respiratory distress syndrome. An oropharynx primary infection site was most prone to a prolonged clinical evolution. Anticoagulation therapy was given in 90% of patients. All 23 patients survived the disseminated infection without consecutive systemic morbidity. CONCLUSION In the pre-antibiotic time, septic internal jugular vein thrombophlebitis was a highly fatal condition with a mortality rate of 90%. Modern imaging techniques allow early and often incidental diagnosis of this clinically hidden complication. Anticoagulation, intensive antibiotic therapy assisted by surgery of the primary infection site, and intensive supportive care can reach remission rates of 100%. LEVEL OF EVIDENCE 3b. Laryngoscope, 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positive-stranded viruses synthesize their RNA in membrane-bound organelles, but it is not clear how this benefits the virus or the host. For coronaviruses, these organelles take the form of double-membrane vesicles (DMVs) interconnected by a convoluted membrane network. We used electron microscopy to identify murine coronaviruses with mutations in nsp3 and nsp14 that replicated normally while producing only half the normal amount of DMVs under low-temperature growth conditions. Viruses with mutations in nsp5 and nsp16 produced small DMVs but also replicated normally. Quantitative reverse transcriptase PCR (RT-PCR) confirmed that the most strongly affected of these, the nsp3 mutant, produced more viral RNA than wild-type virus. Competitive growth assays were carried out in both continuous and primary cells to better understand the contribution of DMVs to viral fitness. Surprisingly, several viruses that produced fewer or smaller DMVs showed a higher fitness than wild-type virus at the reduced temperature, suggesting that larger and more numerous DMVs do not necessarily confer a competitive advantage in primary or continuous cell culture. For the first time, this directly demonstrates that replication and organelle formation may be, at least in part, studied separately during infection with positive-stranded RNA virus. IMPORTANCE The viruses that cause severe acute respiratory syndrome (SARS), poliomyelitis, and hepatitis C all replicate in double-membrane vesicles (DMVs). The big question about DMVs is why they exist in the first place. In this study, we looked at thousands of infected cells and identified two coronavirus mutants that made half as many organelles as normal and two others that made typical numbers but smaller organelles. Despite differences in DMV size and number, all four mutants replicated as efficiently as wild-type virus. To better understand the relative importance of replicative organelles, we carried out competitive fitness experiments. None of these viruses was found to be significantly less fit than wild-type, and two were actually fitter in tests in two kinds of cells. This suggests that viruses have evolved to have tremendous plasticity in the ability to form membrane-associated replication complexes and that large and numerous DMVs are not exclusively associated with efficient coronavirus replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In their daily forensic casework, the authors experienced discrepancies of tracheobronchial content findings between postmortem computed tomography (PMCT) and autopsy to an extent previously unnoticed in the literature. The goal of this study was to evaluate such discrepancies in routine forensic cases. A total of 327 cases that underwent PMCT prior to routine forensic autopsy were retrospectively evaluated for tracheal and bronchial contents according to PMCT and autopsy findings. Hounsfield unit (HU) values of tracheobronchial contents, causes of death, and presence of pulmonary edema were assessed in mismatching and matching cases. Comparing contents in PMCT and autopsy in each of the separately evaluated compartments of the respiratory tract low positive predictive values were assessed (trachea, 38.2 %; main bronchi, 40 %; peripheral bronchi, 69.1 %) indicating high discrepancy rates. The majority of tracheobronchial contents were viscous stomach contents in matching cases and low radiodensity materials (i.e., HU < 30) in mismatching cases. The majority of causes of death were cardiac related in the matching cases and skull/brain trauma in the mismatching cases. In mismatching cases, frequency of pulmonary edema was significantly higher than in matching cases. It can be concluded that discrepancies in tracheobronchial contents observed between PMCT and routine forensic autopsy occur in a considerable number of cases. Discrepancies may be explained by the runoff of contents via nose and mouth during external examination and the flow back of tracheal and main bronchial contents into the lungs caused by upright movement of the respiratory tract at autopsy.