866 resultados para Acclimation, Adaptation, Climate change, Global warming, Tgp, Transgenerational plasticity, Maternal effects, Cyprinodon variegatus.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rotation maize and dry bean provides the main food supply of smallholder farmers in Honduras. Crop model assessment of climate change impacts (2070?2099 compared to a 1961?1990 baseline) on a maize?dry bean rotation for several sites across a range of climatic zones and elevations in Honduras. Low productivity systems, together with an uncertain future climate, pose a high level of risk for food security. The cropping systems simulation dynamic model CropSyst was calibrated and validated upon field trail site at Zamorano, then run with baseline and future climate scenarios based upon general circulation models (GCM) and the ClimGen synthetic daily weather generator. Results indicate large uncertainty in crop production from various GCM simulations and future emissions scenarios, but generally reduced yields at low elevations by 0 % to 22 % in suitable areas for crop production and increased yield at the cooler, on the hillsides, where farming needs to reduce soil erosion with conservation techniques. Further studies are needed to investigate strategies to reduce impacts and to explore adaptation tactics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of climate change will be felt by most farmers in Europe over the next decades. This study provides consistent results of the impact of climate change on arable agriculture in Europe by using high resolution climate data, socio-economic data, and impact assessment models, including farmer adaptation. All scenarios are consistent with the spatial distribution of effects, exacerbating regional disparities and current vulnerability to climate. Since the results assume no restrictions on the use of water for irrigation or on the application of agrochemicals, they may be considered optimistic from the production point of view and somewhat pessimistic from the environmental point of view. The results provide an estimate of the regional economic impact of climate change, as well as insights into the importance of mitigation and adaptation policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sustainable manufacturing process must rely on an also sustainable raw materials and energy supply. This paper is intended to show the results of the studies developed on sustainable business models for the minerals industry as a fundamental previous part of a sustainable manufacturing process. As it has happened in other economic activities, the mining and minerals industry has come under tremendous pressure to improve its social, developmental, and environmental performance. Mining, refining, and the use and disposal of minerals have in some instances led to significant local environmental and social damage. Nowadays, like in other parts of the corporate world, companies are more routinely expected to perform to ever higher standards of behavior, going well beyond achieving the best rate of return for shareholders. They are also increasingly being asked to be more transparent and subject to third-party audit or review, especially in environmental aspects. In terms of environment, there are three inter-related areas where innovation and new business models can make the biggest difference: carbon, water and biodiversity. The focus in these three areas is for two reasons. First, the industrial and energetic minerals industry has significant footprints in each of these areas. Second, these three areas are where the potential environmental impacts go beyond local stakeholders and communities, and can even have global impacts, like in the case of carbon. So prioritizing efforts in these areas will ultimately be a strategic differentiator as the industry businesses continues to grow. Over the next forty years, world?s population is predicted to rise from 6.300 million to 9.500 million people. This will mean a huge demand of natural resources. Indeed, consumption rates are such that current demand for raw materials will probably soon exceed the planet?s capacity. As awareness of the actual situation grows, the public is demanding goods and services that are even more environmentally sustainable. This means that massive efforts are required to reduce the amount of materials we use, including freshwater, minerals and oil, biodiversity, and marine resources. It?s clear that business as usual is no longer possible. Today, companies face not only the economic fallout of the financial crisis; they face the substantial challenge of transitioning to a low-carbon economy that is constrained by dwindling natural resources easily accessible. Innovative business models offer pioneering companies an early start toward the future. They can signal to consumers how to make sustainable choices and provide reward for both the consumer and the shareholder. Climate change and carbon remain major risk discontinuities that we need to better understand and deal with. In the absence of a global carbon solution, the principal objective of any individual country should be to reduce its global carbon emissions by encouraging conservation. The mineral industry internal response is to continue to focus on reducing the energy intensity of our existing operations through energy efficiency and the progressive introduction of new technology. Planning of the new projects must ensure that their energy footprint is minimal from the start. These actions will increase the long term resilience of the business to uncertain energy and carbon markets. This focus, combined with a strong demand for skills in this strategic area for the future requires an appropriate change in initial and continuing training of engineers and technicians and their awareness of the issue of eco-design. It will also need the development of measurement tools for consistent comparisons between companies and the assessments integration of the carbon footprint of mining equipments and services in a comprehensive impact study on the sustainable development of the Economy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mediterranean region is one of the world's climate change hotspots. Future climate projections envisage dramatic implications for the agricultural and water sectors that will endanger economic development and lead to natural resources degradation and social instability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comments This article is a U.S. government work, and is not subject to copyright in the United States. Abstract Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly 0.5 Mg ha 1 per °C. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased summer drought will exacerbate the regeneration of many tree species at their lower latitudinal and altitudinal distribution limits. In vulnerable habitats, introduction of more drought-tolerant provenances or species is currently considered to accelerate tree species migration and facilitate forest persistence. Trade-offs between drought adaptation and growth plasticity might, however, limit the effectiveness of assisted migration, especially if introductions focus on provenances or species from different climatic regions. We tested in a common garden experiment the performance of Pinus sylvestris seedlings from the continental Central Alps under increased temperatures and extended spring and/or summer drought, and compared seedling emergence, survival and biomass allocation to that of P. sylvestris and closely related Pinus nigra from a Mediterranean seed source. Soil heating had only minor effects on seedling performance but high spring precipitation doubled the number of continental P. sylvestris seedlings present after the summer drought. At the same time, twice as many seedlings of the Mediterranean than the continental P. sylvestris provenance were present, which was due to both higher emergence and lower mortality under dry conditions. Both P. sylvestris provenances allocated similar amounts of biomass to roots when grown under low summer precipitation. Mediterranean seedlings, however, revealed lower phenotypic plasticity than continental seedlings under high precipitation, which might limit their competitive ability in continental Alpine forests in non-drought years. By contrast, high variability in the response of individual seedlings to summer drought indicates the potential of continental P. sylvestris provenances to adapt to changing environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water is fundamental to human life and the availability of freshwater is often a constraint on human welfare and economic development. Consequently, the potential effects of global changes on hydrology and water resources are considered among the most severe and vital ones. Water scarcity is one of the main problems in the rural communities of Central America, as a result of an important degradation of catchment areas and the over-exploitation of aquifers. The present Thesis is focused on two critical aspects of global changes over water resources: (1) the potential effects of climate change on water quantity and (2) the impacts of land cover and land use changes on the hydrological processes and water cycle. Costa Rica is among the few developing countries that have recently achieved a land use transition with a net increase in forest cover. Osa Region in South Pacific Costa Rica is an appealing study site to assess water supply management plans and to measure the effects of deforestation, forest transitions and climate change projections reported in the region. Rural Community Water Supply systems (ASADAS) in Osa are dealing with an increasing demand of freshwater due to the growing population and the change in the way of life in the rural livelihoods. Land cover mosaics which have resulted from the above mentioned processes are characterized by the abandonment of marginal farmland with the spread over these former grasslands of high return crops and the expansion of secondary forests due to reforestation initiatives. These land use changes have a significant impact on runoff generation in priority water-supply catchments in the humid tropics, as evidenced by the analysis of the Tinoco Experimental Catchment in the Southern Pacific area of Costa Rica. The monitoring system assesses the effects of the different land uses on the runoff responses and on the general water cycle of the basin. Runoff responses at plot scale are analyzed for secondary forests, oil palm plantations, forest plantations and grasslands. The Oil palm plantation plot presented the highest runoff coefficient (mean RC=32.6%), twice that measured under grasslands (mean RC=15.3%) and 20-fold greater than in secondary forest (mean RC=1.7%). A Thornthwaite-type water balance is proposed to assess the impact of land cover and climate change scenarios over water availability for rural communities in Osa Region. Climate change projections were obtained by the downscaling of BCM2, CNCM3 and ECHAM5 models. Precipitation and temperature were averaged and conveyed by the A1B, A2 and B1 IPCC climate scenario for 2030, 2060 and 2080. Precipitation simulations exhibit a positive increase during the dry season for the three scenarios and a decrease during the rainy season, with the highest magnitude (up to 25%) by the end of the 21st century under scenario B1. Monthly mean temperature simulations increase for the three scenarios throughout the year with a maximum increase during the dry season of 5% under A1B and A2 scenarios and 4% under B1 scenario. The Thornthwaite-type Water Balance model indicates important decreases of water surplus for the three climate scenarios during the rainy season, with a maximum decrease on May, which under A1B scenario drop up to 20%, under A2 up to 40% and under B1 scenario drop up to almost 60%. Land cover scenarios were created taking into account current land cover dynamics of the region. Land cover scenario 1 projects a deforestation situation, with forests decreasing up to 15% due to urbanization of the upper catchment areas; land cover scenario 2 projects a forest recovery situation where forested areas increase due to grassland abandonment on areas with more than 30% of slope. Deforestation scenario projects an annual water surplus decrease of 15% while the reforestation scenario projects a water surplus increase of almost 25%. This water balance analysis indicates that climate scenarios are equal contributors as land cover scenarios to future water resource estimations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is already affecting many natural systems and human environments worldwide, like the semiarid Guadiana Basin in Spain. This paper illustrates a systematic analysis of climate change adaptation in the Guadiana irrigation farming region. The study applies a solution-oriented diagnostic framework structured along a series of sequential analytical steps. An initial stage integrates economic and hydrologic modeling to evaluate the effects of climate change on the agriculture and water sectors. Next, adaptation measures are identified and prioritized through a stakeholder-based multi-criteria analysis. Finally, a social network analysis identifies key actors and their relationships in climate change adaptation. The study shows that under a severe climate change scenario, water availability could be substantially decreased and drought occurrence will augment. In consequence, farmers will adapt their crops to a lesser amount of water and income gains will diminish, particularly for smallholder farms. Among the various adaptation measures considered, those related to private farming (new crop varieties and modern irrigation technologies) are ranked highest, whereas public-funded hard measures (reservoirs) are lowest and public soft measures (insurance) are ranked middle. In addition, stakeholders highlighted that the most relevant criteria for selecting adaptation plans are environmental protection, financial feasibility and employment creation. Nonetheless, the social network analysis evidenced the need to strengthen the links among the different stakeholder groups to facilitate the implementation of adaptation processes. In sum, the diagnostic framework applied in this research can be considered a valuable tool for guiding and supporting decision making in climate change adaptation and communicating scientific results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projections for world food production and prices play a crucial role to evaluate and tackle future food security challenges. Understanding how these projections will be affected by climate change is the main objective of this study. By means of a bio-economic approach we assess the economic impacts of climate change on agrifood markets, providing both a global analysis and a regionalised evaluation within the EU. To account for uncertainty, we analyse the IPCC emission scenario A1B for the 2030 horizon under several simulation scenarios that differ in (1) the climate projection, from HadleyCM3 (warm) or ECHAM5 (mild) global circulation models; and (2) the influence of CO2 effects. Results of this study indicate that agrifood market projections to 2030 are very sensitive to climate change uncertainties and, in particular to the magnitude of the carbon fertilization effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The agricultural sector could be one of the most vulnerable economic sectors to the impacts of climate change in the coming decades. Climate change impacts are related to changes in the growth period, extreme weather events, and changes in temperature and recipitation patterns, among others. All of these impacts may have significant consequences on agricultural production(Bates, et al.2008. A main issue regarding climate change impacts is related to the uncertainty associated with their occurrence. Climate change impacts can bestimated with simulation models based on several assumptions, among which the future patterns of emissions of greenhouse g asses are quite likely the most relevant, driving the development of future scenarios, i.e. plausible visions of how the future may unfold. Those scenarios are developed as storylines associated with different assumptions about climate and socioeconomic conditions and emissions, with reference figures, such as demographic projections, average global temperatures, etc.(Intergovernmental Panel on Climate Change 2000). Within this context, climate change impact assessment is forced to consider multiple and interconnected sources of uncertainty in order to produce valuable information for policymakers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate projections indicate that rising temperatures will affect summer crops in the southern Iberian Peninsula. The aim of this study was to obtain projections of the impacts of rising temperatures, and of higher frequency of extreme events on irrigated maize, and to evaluate some adaptation strategies. The study was conducted at several locations in Andalusia using the CERES-Maize crop model, previously calibrated/validated with local experimental datasets. The simulated climate consisted of projections from regional climate models from the ENSEMBLES project; these were corrected for daily temperature and precipitation with regard to the E-OBS observational dataset. These bias-corrected projections were used with the CERES-Maize model to generate future impacts. Crop model results showed a decrease in maize yield by the end of the 21st century from 6 to 20%, a decrease of up to 25% in irrigation water requirements, and an increase in irrigation water productivity of up to 22%, due to earlier maturity dates and stomatal closure caused by CO2 increase. When adaptation strategies combining earlier sowing dates and cultivar changes were considered, impacts were compensated, and maize yield increased up to 14%, compared with the baseline period (1981-2010), with similar reductions in crop irrigation water requirements. Effects of extreme maximum temperatures rose to 40% at the end of the 21st century, compared with the baseline. Adaptation resulted in an overall reduction in extreme Tmax damages in all locations, with the exception of Granada, where losses were limited to 8%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The realistic physical functioning of the greenhouse effect is reviewed, and the role of dynamic transport and water vapor is identified. Model errors and uncertainties are quantitatively compared with the forcing due to doubling CO2, and they are shown to be too large for reliable model evaluations of climate sensitivities. The possibility of directly measuring climate sensitivity is reviewed. A direct approach using satellite data to relate changes in globally averaged radiative flux changes at the top of the atmosphere to naturally occurring changes in global mean temperature is described. Indirect approaches to evaluating climate sensitivity involving the response to volcanic eruptions and Eocene climate change are also described. Finally, it is explained how, in principle, a climate that is insensitive to gross radiative forcing as produced by doubling CO2 might still be able to undergo major changes of the sort associated with ice ages and equable climates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar variability represents a source of uncertainty in the future forcings used in climate model simulations. Current knowledge indicates that a descent of solar activity into an extended minimum state is a possible scenario. With aid of experiments from a state-of-the-art Earth system model, we investigate the impact of a future solar minimum on Northern Hemisphere climate change projections. This scenario is constructed from recent 11 year solar-cycle minima of the solar spectral irradiance, and is therefore more conservative than the 'grand' minima employed in some previous modeling studies. Despite the small reduction in total solar irradiance (0.36 W m^-2), relatively large responses emerge in the winter Northern Hemisphere, with a reduction in regional-scale projected warming by up to 40%. To identify the origin of the enhanced regional signals, we assess the role of the different mechanisms by performing additional experiments forced only by irradiance changes at different wavelengths of the solar spectrum. We find that a reduction in visible irradiance drives changes in the stationary wave pattern of the North Pacific and sea-ice cover. A decrease in UV irradiance leads to smaller surface signals, although its regional effects are not negligible. These results point to a distinct but additive role of UV and visible irradiance in the Earth's climate, and stress the need to account for solar forcing as a source of uncertainty in regional scale projections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six Denver metro water reservoirs were sampled to see what types of algae were found, and what impact the algae would have on drinking water reservoirs in the event of a bloom caused by warming water temperatures. Each sample contained algae. Toxic cyanobacteria, filamentous green algae, and different species of diatoms were found in the samples. Current climate change models show the temperature along the Front Range is rising and will continue to rise. With an increase in climate change and an increase in population, humans and animals will be at a greater risk of ingesting or coming into contact with toxic algae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The EU has long assumed leadership in advancing domestic and international climate change policy. While pushing its partners in international negotiations, it has led the way in implementing a host of domestic measures, including a unilateral and legally binding target, an ambitious policy on renewable energy and a strategy for low-carbon technology deployment. The centrepiece of EU policy, however, has been the EU Emissions Trading System (ETS), a cap-and-trade programme launched in 2005. The ETS has been seen as a tool to ensure least-cost abatement, drive EU decarbonisation and develop a global carbon market. After an initial review and revision of the ETS, to come into force in 2013, there was a belief that the new ETS was ‘future-proof’, meaning able to cope with the temporary lack of a global agreement on climate change and individual countries’ emission ceilings. This confidence has been shattered by the simultaneous ‘failure’ of Copenhagen to deliver a clear prospect of a global (top-down) agreement and the economic crisis. The lack of prospects for national caps at the international level has led to a situation whereby many member states hesitate to pursue ambitious climate change policies. In the midst of this, the EU is assessing its options anew. A number of promising areas for international cooperation exist, all centred on the need to ‘raise the ambition level’ of GHG emission reductions, notably in aviation and maritime, short-lived climate pollutions, deforestation, industrial competitiveness and green growth. Public policy issues in the field of technology and its transfer will require more work to identify real areas for cooperation.