908 resultados para AUTOMOTIVE ACESSORIES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automated assembly of mechanical devices is studies by researching methods of operating assembly equipment in a variable manner; that is, systems which may be configured to perform many different assembly operations are studied. The general parts assembly operation involves the removal of alignment errors within some tolerance and without damaging the parts. Two methods for eliminating alignment errors are discussed: a priori suppression and measurement and removal. Both methods are studied with the more novel measurement and removal technique being studied in greater detail. During the study of this technique, a fast and accurate six degree-of-freedom position sensor based on a light-stripe vision technique was developed. Specifications for the sensor were derived from an assembly-system error analysis. Studies on extracting accurate information from the sensor by optimally reducing redundant information, filtering quantization noise, and careful calibration procedures were performed. Prototype assembly systems for both error elimination techniques were implemented and used to assemble several products. The assembly system based on the a priori suppression technique uses a number of mechanical assembly tools and software systems which extend the capabilities of industrial robots. The need for the tools was determined through an assembly task analysis of several consumer and automotive products. The assembly system based on the measurement and removal technique used the six degree-of-freedom position sensor to measure part misalignments. Robot commands for aligning the parts were automatically calculated based on the sensor data and executed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C.J.Price, D.R.Pugh, N.A.Snooke, J.E.Hunt, M.S.Wilson, Combining Functional and Structural Reasoning for Safety Analysis of Electrical Designs, Knowledge Engineering Review, vol 12:3, pp.271-287, 1997.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lee M.H., Bell J. and Coghill G.M., Ambiguities and Deviations in Qualitative Circuit Analysis, in Proc. QR?2001, 15th Int. Workshop on Qualitative Reasoning, San Antonio, Texas, May 2001, pp51-58.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxtoby, B.; McGuinness, T.; and Morgan, R. (2002). Developing organisational change capability. European Management Journal. 20(3), pp.310-320 RAE2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is focused on the design and development of an integrated magnetic (IM) structure for use in high-power high-current power converters employed in renewable energy applications. These applications require low-cost, high efficiency and high-power density magnetic components and the use of IM structures can help achieve this goal. A novel CCTT-core split-winding integrated magnetic (CCTT IM) is presented in this thesis. This IM is optimized for use in high-power dc-dc converters. The CCTT IM design is an evolution of the traditional EE-core integrated magnetic (EE IM). The CCTT IM structure uses a split-winding configuration allowing for the reduction of external leakage inductance, which is a problem for many traditional IM designs, such as the EE IM. Magnetic poles are incorporated to help shape and contain the leakage flux within the core window. These magnetic poles have the added benefit of minimizing the winding power loss due to the airgap fringing flux as they shape the fringing flux away from the split-windings. A CCTT IM reluctance model is developed which uses fringing equations to accurately predict the most probable regions of fringing flux around the pole and winding sections of the device. This helps in the development of a more accurate model as it predicts the dc and ac inductance of the component. A CCTT IM design algorithm is developed which relies heavily on the reluctance model of the CCTT IM. The design algorithm is implemented using the mathematical software tool Mathematica. This algorithm is modular in structure and allows for the quick and easy design and prototyping of the CCTT IM. The algorithm allows for the investigation of the CCTT IM boxed volume with the variation of input current ripple, for different power ranges, magnetic materials and frequencies. A high-power 72 kW CCTT IM prototype is designed and developed for use in an automotive fuelcell-based drivetrain. The CCTT IM design algorithm is initially used to design the component while 3D and 2D finite element analysis (FEA) software is used to optimize the design. Low-cost and low-power loss ferrite 3C92 is used for its construction, and when combined with a low number of turns results in a very efficient design. A paper analysis is undertaken which compares the performance of the high-power CCTT IM design with that of two discrete inductors used in a two-phase (2L) interleaved converter. The 2L option consists of two discrete inductors constructed from high dc-bias material. Both topologies are designed for the same worst-case phase current ripple conditions and this ensures a like-for-like comparison. The comparison indicates that the total magnetic component boxed volume of both converters is similar while the CCTT IM has significantly lower power loss. Experimental results for the 72 kW, (155 V dc, 465 A dc input, 420 V dc output) prototype validate the CCTT IM concept where the component is shown to be 99.7 % efficient. The high-power experimental testing was conducted at General Motors advanced technology center in Torrence, Los Angeles. Calorific testing was used to determine the power loss in the CCTT IM component. Experimental 3.8 kW results and a 3.8 kW prototype compare and contrast the ferrite CCTT IM and high dc-bias 2L concepts over the typical operating range of a fuelcell under like-for-like conditions. The CCTT IM is shown to perform better than the 2L option over the entire power range. An 8 kW ferrite CCTT IM prototype is developed for use in photovoltaic (PV) applications. The CCTT IM is used in a boost pre-regulator as part of the PV power stage. The CCTT IM is compared with an industry standard 2L converter consisting of two discrete ferrite toroidal inductors. The magnetic components are compared for the same worst-case phase current ripple and the experimental testing is conducted over the operation of a PV panel. The prototype CCTT IM allows for a 50 % reduction in total boxed volume and mass in comparison to the baseline 2L option, while showing increased efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cerium dioxide (ceria) nanoparticles have been the subject of intense academic and industrial interest. Ceria has a host of applications but academic interest largely stems from their use in the modern automotive catalyst but it is also of interest because of many other application areas notably as the abrasive in chemical-mechanical planarisation of silicon substrates. Recently, ceria has been the focus of research investigating health effects of nanoparticles. Importantly, the role of non-stoichiometry in ceria nanoparticles is implicated in their biochemistry. Ceria has well understood non-stoichiometry based around the ease of formation of anion vacancies and these can form ordered superstructures based around the fluorite lattice structure exhibited by ceria. The anion vacancies are associated with localised or small polaron states formed by the electrons that remain after oxygen desorption. In simple terms these electrons combine with Ce4+ states to form Ce3+ states whose larger ionic radii is associated with a lattice expansion compared to stoichiometric CeO2. This is a very simplistic explanation and greater defect chemistry complexity is suggested by more recent work. Various authors have shown that vacancies are mobile and may result in vacancy clustering. Ceria nanoparticles are of particular interest because of the high activity and surface area of small particulates. The sensitivity of the cerium electronic band structure to environment would suggest that changes in the properties of ceria particles at nanoscale dimensions might be expected. Notably many authors report a lattice expansion with reducing particle size (largely confined to sub-10 nm particles). Most authors assign increased lattice dimensions to the presence of a surface stable Ce2O3 type layer at low nanoparticle dimensions. However, our understanding of oxide nanoparticles is limited and their full and quantitative characterisation offers serious challenges. In a series of chemical preparations by ourselves we see little evidence of a consistent model emerging to explain lattice parameter changes with nanoparticle size. Based on these results and a review of the literature it is worthwhile asking if a model of surface enhanced defect concentration is consistent with known cerium/cerium oxide chemistries, whether this is applicable to a range of different synthesis methods and if a more consistent description is possible. In Chapter one the science of cerium oxide is outlined including the crystal structure, defect chemistry and different oxidation states available. The uses and applications of cerium oxide are also discussed as well as modelling of the lattice parameter and the doping of the ceria lattice. Chapter two describes both the synthesis techniques and the analytical methods employed to execute this research. Chapter three focuses on high surface area ceria nano-particles and how these have been prepared using a citrate sol-gel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures. X-ray diffraction methods were used to determine their lattice parameters. The particles sizes were also assessed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and BET, and, the lattice parameter was found to decrease with decreasing particle size. The results are discussed in light of the role played by surface tension effects. Chapter four describes the morphological and structural characterization of crystalline CeO2 nanoparticles prepared by forward and reverse precipitation techniques and compares these by powder x-ray diffraction (PXRD), nitrogen adsorption (BET) and high resolution transmission electron microscopy (HRTEM) analysis. The two routes give quite different materials although in both cases the products are essentially highly crystalline, dense particulates. It was found that the reverse precipitation technique gave the smallest crystallites with the narrowest size dispersion. This route also gave as-synthesised materials with higher surface areas. HRTEM confirmed the observations made from PXRD data and showed that the two methods resulted in quite different morphologies and surface chemistries. The forward route gives products with significantly greater densities of Ce3+ species compared to the reverse route. Data are explained using known precipitation chemistry and kinetic effects. Chapter five centres on the addition of terbia to ceria and has been investigated using XRD, XRF, XPS and TEM. Good solid solutions were formed across the entire composition range and there was no evidence for the formation of mixed phases or surface segregation over either the composition or temperature range investigated. Both Tb3+ and Tb4+ ions exist within the solution and the ratios of these cations are consistent with the addition of Tb8O15 to the fluorite ceria structure across a wide range of compositions. Local regions of anion vacancy ordering may be visible for small crystallites. There is no evidence of significant Ce3+ ion concentrations formed at the surface or in the bulk by the addition of terbia. The lattice parameter of these materials was seen to decrease with decreasing crystallite size. This is consistent with increased surface tension effects at small dimension. Chapter six reviews size related lattice parameter changes and surface defects in ceria nanocrystals. Ceria (CeO2) has many important applications, notably in catalysis. Many of its uses rely on generating nanodimensioned particles. Ceria has important redox chemistry where Ce4+ cations can be reversibly reduced to Ce3+ cations and associated anion vacancies. The significantly larger size of Ce3+ (compared with Ce4+) has been shown to result in lattice expansion. Many authors have observed lattice expansion in nanodimensioned crystals (nanocrystals), and these have been attributed to the presence of stabilized Ce3+ -anion vacancy combinations in these systems. Experimental results presented here show (i) that significant, but complex changes in the lattice parameter with size can occur in 2-500 nm crystallites, (ii) that there is a definitive relationship between defect chemistry and the lattice parameter in ceria nanocrystals, and (iii) that the stabilizing mechanism for the Ce3+ -anion vacancy defects at the surface of ceria nanocrystals is determined by the size, the surface status, and the analysis conditions. In this work, both lattice expansion and a more unusual lattice contraction in ultrafine nanocrystals are observed. The lattice deformations seen can be defined as a function of both the anion vacancy (hydroxyl) concentration in the nanocrystal and the intensity of the additional pressure imposed by the surface tension on the crystal. The expansion of lattice parameters in ceria nanocrystals is attributed to a number of factors, most notably, the presence of any hydroxyl moieties in the materials. Thus, a very careful understanding of the synthesis combined with characterization is required to understand the surface chemistry of ceria nanocrystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with inductive charging of electric vehicle batteries. Rectified power form the 50/60 Hz utility feeds a dc-ac converter which delivers high-frequency ac power to the electric vehicle inductive coupling inlet. The inlet configuration has been defined by the Society of Automotive Engineers in Recommended Practice J-1773. This thesis studies converter topologies related to the series resonant converter. When coupled to the vehicle inlet, the frequency-controlled series-resonant converter results in a capacitively-filtered series-parallel LCLC (SP-LCLC) resonant converter topology with zero voltage switching and many other desirable features. A novel time-domain transformation analysis, termed Modal Analysis, is developed, using a state variable transformation, to analyze and characterize this multi-resonant fourth-orderconverter. Next, Fundamental Mode Approximation (FMA) Analysis, based on a voltage-source model of the load, and its novel extension, Rectifier-Compensated FMA (RCFMA) Analysis, are developed and applied to the SP-LCLC converter. The RCFMA Analysis is a simpler and more intuitive analysis than the Modal Analysis, and provides a relatively accurate closed-form solution for the converter behavior. Phase control of the SP-LCLC converter is investigated as a control option. FMA and RCFMA Analyses are used for detailed characterization. The analyses identify areas of operation, which are also validated experimentally, where it is advantageous to phase control the converter. A novel hybrid control scheme is proposed which integrates frequency and phase control and achieves reduced operating frequency range and improved partial-load efficiency. The phase-controlled SP-LCLC converter can also be configured with a parallel load and is an excellent option for the application. The resulting topology implements soft-switching over the entire load range and has high full-load and partial-load efficiencies. RCFMA Analysis is used to analyze and characterize the new converter topology, and good correlation is shown with experimental results. Finally, a novel single-stage power-factor-corrected ac-dc converter is introduced, which uses the current-source characteristic of the SP-LCLC topology to provide power factor correction over a wide output power range from zero to full load. This converter exhibits all the advantageous characteristics of its dc-dc counterpart, with a reduced parts count and cost. Simulation and experimental results verify the operation of the new converter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem to be examined here is the fluctuating pressure distribution along the open cavity of the sun-roof at the top of a car compartment due to gusts passing over the sun-roof. The aim of this test is to investigate the capability of a typical commercial CFD package, PHOENICS, in recognising pressure fluctuations occurring in an important automotive industrial problem. In particular to examine the accuracy of transporting pulsatory gusts traveling along the main flow through the use of finite volume methods with higher order schemes in the numercial solutins of the unsteady compressible Navier-Stokes equations. The Helmholtz equation is used to solve the sound distribution inside the car compartment, resulting from the externally induced fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Power electronic modules distinguish themselves from other modules by their high power operation. These modules are used extensively in high power application markets such as aerospace, automotive, industrial and traction and drives. This paper discusses typical packaging technologies for power electronics modules. It also discusses the latest results from a UK research project investigating the physics-of-failure approach to reliability analysis and predictions for power modules. An integrated design enviroment for incorporating of affects of uncertainty into the design environment was outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes work towards the deployment of flexible self-management into real-time embedded systems. A challenging project which focuses specifically on the development of a dynamic, adaptive automotive middleware is described, and the specific self-management requirements of this project are discussed. These requirements have been identified through the refinement of a wide-ranging set of use cases requiring context-sensitive behaviours. A sample of these use-cases is presented to illustrate the extent of the demands for self-management. The strategy that has been adopted to achieve self-management, based on the use of policies is presented. The embedded and real-time nature of the target system brings the constraints that dynamic adaptation capabilities must not require changes to the run-time code (except during hot update of complete binary modules), adaptation decisions must have low latency, and because the target platforms are resource-constrained the self-management mechanism have low resource requirements (especially in terms of processing and memory). Policy-based computing is thus and ideal candidate for achieving the self-management because the policy itself is loaded at run-time and can be replaced or changed in the future in the same way that a data file is loaded. Policies represent a relatively low complexity and low risk means of achieving self-management, with low run-time costs. Policies can be stored internally in ROM (such as default policies) as well as externally to the system. The architecture of a designed-for-purpose powerful yet lightweight policy library is described. A suitable evaluation platform, supporting the whole life-cycle of feasibility analysis, concept evaluation, development, rigorous testing and behavioural validation has been devised and is described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of flexible substrates is growing in many applications such as computer peripherals, hand held devices, telecommunications, automotive, aerospace, etc. The drive to adopt flexible circuits is due to their ability to reduce size, weight, assembly time and cost of the final product.They also accommodate flexibility by allowing relative movement between component parts and provide a route for three dimensional packaging. This paper will describe some of the current research results from the Flex-No-Lead project, a European Commission sponsored research program. The principle aim of this project is to investigate the processing, performance, and reliability of flexible substrates when subjected to new environmentally friendly, lead-free soldering technologies. This paper will discuss the impact of specific design variables on performance and reliability. In particular the paper will focus on copper track designs, substrate material, dielectric material and solder-mask defined joints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of flexible substrates is growing in many applications such as computer peripherals, hand held devices, telecommunications, automotive, aerospace, etc. The drive to adopt flexible circuits is due to their ability to reduce size, weight, assembly time and cost of final product. they also accommodate flexibility by allowing relative movement between component parts and provide a route for three dimensional packaging. This paper will describe some of the current research results from the Flex-No-Lead project, European Commission sponsored programme. The principle aim of this project is to investigate the processing, performance and reliability of flexible substrates when subjected to new environmentally friendly, lead-free soldering technologies. This paper will discuss the impact of specific design variables on performance and reliability. In particular the paper will focus on copper track designs, substrate material, dielectric material and solder mask defined joints

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a methodology for embedding dynamic behaviour into software components. The implications and system architecture requirements to support this adaptivity are discussed. This work is part of a European Commission funded and industry supported project to produce a reconfigurable middleware for use in automotive systems. Such systems must be trustable against illegal internal behaviour and activity with external origins, additional devices for example. Policy-based computing is used here as an example of embedded logic. A key contribution of this work is the way in which static and dynamic aspects of the system are interfaced, such that the behaviour can be changed very flexibly (even during run-time), without modification, recompilation or redeployment of the embedded application code. An implementation of these concepts is presented, focussing on achieving trust in the use of dynamic behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a highly flexible component architecture, primarily designed for automotive control systems, that supports distributed dynamically- configurable context-aware behaviour. The architecture enforces a separation of design-time and run-time concerns, enabling almost all decisions concerning runtime composition and adaptation to be deferred beyond deployment. Dynamic context management contributes to flexibility. The architecture is extensible, and can embed potentially many different self-management decision technologies simultaneously. The mechanism that implements the run-time configuration has been designed to be very robust, automatically and silently handling problems arising from the evaluation of self- management logic and ensuring that in the worst case the dynamic aspects of the system collapse down to static behavior in totally predictable ways.