874 resultados para ATYPICAL ANTIPSYCHOTIC-DRUGS
Resumo:
Suboxic sapropel S1 sediments of the eastern Mediterranean carry an untypically light δ98/95Mo signal, being even lighter than oxic Mn-enriched sediments and Mn-crusts/nodules, which were previously thought to carry the lightest Mo isotope values. The evaluation and comparison of oxic S1, diagenetically overprinted oxic S1, and suboxic S1 sediments indicates that this light isotope signal is primarily an oxic signal that has been overprinted by secondary diagenetic processes occurring after sediment burial. Such secondary processes bear the potential of additional Mo isotope fractionation in particular in non-steady state diagenetic environments that involve the discontinuous re-location of the redox boundary.
Resumo:
Tuberculosis remains a major threat as drug resistance continues to increase. Pulmonary tuberculosis in adults is responsible for 80% of clinical cases and nearly 100% of transmission of infection. Unfortunately, since we have no animal models of adult type pulmonary tuberculosis, the most important type of disease remains largely out of reach of modern science and many fundamental questions remain unanswered. This paper reviews research dating back to the 1950's providing compelling evidence that cord factor (trehalose 6,6 dimycolate [TDM]) is essential for understanding tuberculosis. However, the original papers by Bloch and Noll were too far ahead of their time to have immediate impact. We can now recognize that the physical and biologic properties of cord factor are unprecedented in science, especially its ability to switch between two sets of biologic activities with changes in conformation. While TDM remains on organisms, it protects them from killing within macrophages, reduces antibiotic effectiveness and inhibits the stimulation of protective immune responses. If it comes off organisms and associates with lipid, TDM becomes a driver of tissue damage and necrosis. Studies emanating from cord factor research have produced (1) a rationale for improving vaccines, (2) an approach to new drugs that overcome natural resistance to antibiotics, (3) models of caseating granulomas that reproduce multiple manifestations of human tuberculosis. (4) evidence that TDM is a key T cell antigen in destructive lesions of tuberculosis, and (5) a new understanding of the pathology and pathogenesis of postprimary tuberculosis that can guide more informative studies of long standing mysteries of tuberculosis.
Resumo:
INTRODUCTION Erythema exsudativum multiforme majus (EEMM) and Stevens-Johnson Syndrome (SJS) are severe cutaneous reaction patterns caused by infections or drug hypersensitivity. The mechanism by which widespread keratinocyte death is mediated by the immune system in EEMM/SJS are still to be elucidated. Here, we characterized the blister cells isolated from a patient with EEMM/SJS overlap and investigated its cause. METHODS Clinical classification of the cutaneous eruption was done according to the consensus definition of severe blistering skin reactions and histological analysis. Common infectious causes of EEMM were investigated using standard clinical techniques. T cell reactivity for potentially causative drugs was assessed by lymphocyte transformation tests (LTT). Lymphocytes isolated from blister fluid were analyzed for their expression of activation markers and cytotoxic molecules using flow cytometry. RESULTS The healthy 58 year-old woman suffered from mild respiratory tract infection and therefore started treatment with the secretolytic drug Ambroxol. One week later, she presented with large palmar and plantar blisters, painful mucosal erosions, and flat atypical target lesions and maculae on the trunc, thus showing the clinical picture of an EEMM/SJS overlap (Fig. 1). This diagnosis was supported by histology, where also eosinophils were found to infiltrate the upper dermis, thus pointing towards a cutaneous adverse drug reaction (cADR). Analysis of blister cells showed that they mainly consisted of CD8+ and CD4+ T cells and a smaller population of NK cells. Both the CD8+ T cells and the NK cells were highly activated and expressed Fas ligand and the cytotoxic molecule granulysin (Fig. 2). In addition, in comparison to NK cells from PBMC, NK cells in blister fluids strongly upregulated the expression of the skin-homing chemokine receptor CCR4 (Fig 4). Surprisingly, the LTT performed on PBMCs in the acute phase was positive for Ambroxol (SI=2.9) whereas a LTT from a healthy but exposed individual did not show unspecific proliferation. Laboratory tests for common infectious causes of EEMM were negative (HSV-1/-2, M. pneumoniae, Parvovirus B19). However, 6 weeks later, specific proliferation to Ambroxol could no longer be observed in the LTT (Fig 4.).
Resumo:
Agitation is a major problem in acute schizophrenia. Still, only limited evidence exists on antipsychotic efficacy in severely agitated patients after the first 24 hours. We aimed to investigate the efficacy of oral haloperidol, risperidone, and olanzapine in reducing psychotic agitation in severely agitated patients with schizophrenia or schizophreniform or schizoaffective disorder over 96 hours using a prospective, randomized, rater-blinded, controlled design within a naturalistic treatment regimen. We enrolled 43 severely agitated patients at acute care psychiatric units. Participants were randomly assigned to receive either daily haloperidol 15 mg, olanzapine 20 mg, or risperidone 2 – 6 mg over 5 days. Positive and Negative Syndrome Scale psychotic agitation (PANSS-PAS) subscore was the primary outcome variable. A mixed model analyses was applied. All drugs were effective for rapid tranquillization within 2 hours. Over 5 days, the course differed between agents (p < 0.001) but none was superior. Dropouts occurred only in the risperidone and olanzapine groups. Men responded better to treatment than women during the initial 2 hours (p = 0.046) as well as over the 5 day course (p < 0.001). No difference between drug groups was observed regarding diazepam or biperiden use. Oral haloperidol, risperidone, and olanzapine seem to be suitable for treating acute severe psychotic agitation in schizophrenia spectrum disorders. We observed a gender effect with poorer outcome in women.
Resumo:
The injurious effect of nonsteroidal anti-inflammatory drugs (NSAIDs) in the small intestine was not appreciated until the widespread use of capsule endoscopy. Animal studies found that NSAID-induced small intestinal injury depends on the ability of these drugs to be secreted into the bile. Because the individual toxicity of amphiphilic bile acids and NSAIDs directly correlates with their interactions with phospholipid membranes, we propose that the presence of both NSAIDs and bile acids alters their individual physicochemical properties and enhances the disruptive effect on cell membranes and overall cytotoxicity. We utilized in vitro gastric AGS and intestinal IEC-6 cells and found that combinations of bile acid, deoxycholic acid (DC), taurodeoxycholic acid, glycodeoxycholic acid, and the NSAID indomethacin (Indo) significantly increased cell plasma membrane permeability and became more cytotoxic than these agents alone. We confirmed this finding by measuring liposome permeability and intramembrane packing in synthetic model membranes exposed to DC, Indo, or combinations of both agents. By measuring physicochemical parameters, such as fluorescence resonance energy transfer and membrane surface charge, we found that Indo associated with phosphatidylcholine and promoted the molecular aggregation of DC and potential formation of larger and isolated bile acid complexes within either biomembranes or bile acid-lipid mixed micelles, which leads to membrane disruption. In this study, we demonstrated increased cytotoxicity of combinations of bile acid and NSAID and provided a molecular mechanism for the observed toxicity. This mechanism potentially contributes to the NSAID-induced injury in the small bowel.
Resumo:
Divergent relatives of the Hsp70 protein chaperone such as the Hsp110 and Grp170 families have been recognized for some time, yet their biochemical roles remained elusive. Recent work has revealed that these "atypical" Hsp70s exist in stable complexes with classic Hsp70s where they exert a powerful nucleotide-exchange activity that synergizes with Hsp40/DnaJ-type cochaperones to dramatically accelerate Hsp70 nucleotide cycling. This represents a novel evolutionary transition from an independent protein-folding chaperone to what appears to be a dedicated cochaperone. Contributions of the atypical Hsp70s to established cellular roles for Hsp70 now must be deciphered.
Resumo:
There is established clinical evidence for differences in drug response, cure rates and survival outcomes between different ethnic populations, but the causes are poorly understood. Differences in frequencies of functional genetic variants in key drug response and metabolism genes may significantly influence drug response differences in different populations. To assess this, we genotyped 1330 individuals of African (n=372) and European (n=958) descent for 4535 single-nucleotide polymorphisms in 350 key drug absorption, distribution, metabolism, elimination and toxicity genes. Important and remarkable differences in the distribution of genetic variants were observed between Africans and Europeans and among the African populations. These could translate into significant differences in drug efficacy and safety profiles, and also in the required dose to achieve the desired therapeutic effect in different populations. Our data points to the need for population-specific genetic variation in personalizing medicine and care.
Resumo:
A micro-electrospray interface was developed specifically for the neurobiological applications described in this dissertation. Incorporation of a unique nano-flow liquid chromatography micro-electrospray "needle" into the micro-electrospray interface (micro-ES/MS) increased the sensitivity of the mass spectrometric assay by $\sim$1000 fold and thus permitted the first analysis of specific neuroactive compounds in brain extracellular fluid collected by in vivo microdialysis (Md).^ Initial in vivo data presented deals with the pharmacodynamics of a novel GABA$\sb{\rm B}$ antagonist and the availability of the compound in its parent (unmetabolized) form to the brain of the anesthetized rat. Next, the first structurally specific endogenous release of (Met) $\sp5$-enkephalin was demonstrated in unanesthetized freely-moving animals (release of $\sim$6.5 fmole of (Met) $\sp5$-enkephalin into the dialysate by direct neuronal depolarization). The Md/micro-ES/MS system was used to test the acute effects of drugs of abuse on the endogenous release of (Met) $\sp5$-enkephalin from the globus pallidus/ventral pallidum brain region in rats. Four drugs known to be abused by man (morphine, cocaine, methamphetamine and diazepam) were tested. Morphine and cocaine both elicited a two-fold or more increase in the release of (Met) $\sp5$-enkephalin over vehicle controls. Diazepam elicited a small decrease in (Met) $\sp5$-enkephalin levels and methamphetamine showed no significant effect on (Met) $\sp5$-enkephalin. These results imply that (Met) $\sp5$-enkephalin may be involved in the reward pathway of certain drugs of abuse. ^
Resumo:
Foreign mRNA was expressed in Xenopus laevis oocytes. Newly expressed ion currents localized in defined plasma membrane areas were measured using the two-electrode voltage clamp technique in combination with a specially designed chamber, that exposed only part of the surface on the oocytes to channel agonists or inhibitors. Newly expressed currents were found to be unequally distributed in the surface membrane of the oocyte. This asymmetry was most pronounced during the early phase of expression, when channels could almost exclusively be detected in the animal hemisphere of the oocyte. 4 d after injection of the mRNA, or later, channels could be found at a threefold higher density at the animal than at the vegetal pole area. The pattern of distribution was observed to be similar with various ion channels expressed from crude tissue mRNA and from cRNAs coding for rat GABAA receptor channel subunits. Electron microscopical analysis revealed very similar microvilli patterns at both oocyte pole areas. Thus, the asymmetric current distribution is not due to asymmetric surface structure. Upon incubation during the expression period in either colchicine or cytochalasin D, the current density was found to be equal in both pole areas. The inactive control substance beta-lumicolchicine had no effect on the asymmetry of distribution. Colchicine was without effect on the amplitude of the expressed whole cell current. Our measurements reveal a pathway for plasma membrane protein expression endogenous to the Xenopus oocyte, that may contribute to the formation and maintenance of polarity of this highly organized cell.
Resumo:
Progress in the detection and treatment of cancer has led to an impressive reduction in both mortality and morbidity. Due to their mechanism of action, however, conventional chemotherapeutics and some of the newer anti-cancer signaling inhibitors carry a substantial risk of cardiovascular side effects that include cardiac dysfunction and heart failure, arterial hypertension, vasospastic and thromboembolic ischaemia, dysrhythmia, and QT prolongation. While some of these side effects are irreversible and cause progressive cardiovascular disease, others induce only temporary dysfunction with no apparent long-term sequelae for the patient. The challenge for the cardiovascular specialist is to balance the need for life-saving cancer treatment with the assessment of risk from cancer drug-associated cardiovascular side effects to prevent long-term damage. This review discusses concepts for timely diagnosis, intervention, and surveillance of cancer patients undergoing treatment, and provides approaches to clinical uncertainties.
Resumo:
In the developed world, the majority of new and existing hepatitis C virus (HCV) infections occur among people who inject drugs (PWID). The burden of HCV-related liver disease in this group is increasing, but treatment uptake among PWID remains low. Among PWID, there are a number of barriers to care that should be considered and systematically addressed, but these barriers should not exclude PWID from HCV treatment. Furthermore, it has been clearly demonstrated that HCV treatment is safe and effective across a broad range of multidisciplinary healthcare settings. Given the burden of HCV-related disease among PWID, strategies to enhance HCV assessment and treatment in this group are urgently needed. These recommendations demonstrate that treatment among PWID is feasible and provides a framework for HCV assessment, management, and treatment. Further research is needed to evaluate strategies to enhance assessment, adherence, and SVR among PWID, particularly as new treatments for HCV infection become available.
Resumo:
The oral route is the most frequently used method of drug intake in humans. Oral administration of drugs to laboratory animals such as mice typically is achieved through gavage, in which a feeding needle is introduced into the esophagus and the drug is delivered directly into the stomach. This method requires technical skill, is stressful for animals, and introduces risk of injury, pain and morbidity. Here we investigated another method of drug administration. The benzimidazole derivative albendazole was emulsified in commercially available honey and administered to mice by voluntary feeding or gavage. Mice that received albendazole by either gavage or honey ingestion had virtually identical levels of serum albendazole sulfoxide, indicating that uptake and metabolism of albendazole was similar for both administration techniques. In addition, dosing mice with the albendazole-honey mixture for 8 wk had antiparasitic activity comparable to earlier studies using gavage for drug administration. Compared with gavage, voluntary ingestion of a drug in honey is more rapid, less stressful to the animal, and less technically demanding for the administrator. Because of its low cost and ready availability, honey presents a viable vehicle for drug delivery.
Resumo:
An HPLC-DAD method for the quantitative analysis of Δ(9)-tetrahydrocannabinol (THC), Δ(9)-tetrahydrocannabinolic acid-A (THCA-A), cannabidiol (CBD), and cannabinol (CBN) in confiscated cannabis products has been developed, fully validated and applied to analyse seized cannabis products. For determination of the THC content of plant material, this method combines quantitation of THCA-A, which is the inactive precursor of THC, and free THC. Plant material was dried, homogenized and extracted with methanol by ultrasonication. Chromatographic separation was achieved with a Waters Alliance 2695 HPLC equipped with a Merck LiChrospher 60 RP-Select B (5μm) precolumn and a Merck LiChroCart 125-4 LiChrospher 60 RP-Select B (5μm) analytical column. Analytes were detected and quantified using a Waters 2996 photo diode array detector. This method has been accepted by the public authorities of Switzerland (Bundesamt für Gesundheit, Federal Office of Public Health), and has been used to analyse 9092 samples since 2000. Since no thermal decarboxylation of THCA-A occurs, the method is highly reproducible for different cannabis materials. Two calibration ranges are used, a lower one for THC, CBN and CBD, and a higher one for THCA-A, due to its dominant presence in fresh plant material. As provider of the Swiss proficiency test, the robustness of this method has been tested over several years, and homogeneity tests even in the low calibration range (1%) show high precision (RSD≤4.3%, except CBD) and accuracy (bias≤4.1%, except CBN).