889 resultados para ATTENTION DEFICIT
Resumo:
This thesis had two goals: to explore the transformation of Hollywood from the 1930s to present, and to investigate how Contemporary Hollywood functions in a growing attention economy. Evident in the types of films that it produces as well as its evolving industrial structure, Contemporary Hollywood significantly differs from the Classical Hollywood of the 1930s. New digital technologies like surround sound and computer-generated imagery (CGI) have allowed studios to create a different type of film like the blockbuster and to have more extensive control over their films. Additionally, growing exhibition and distribution platforms have also fundamentally altered the industrial landscape of Hollywood. In order to combat this more egalitarian distribution system, Contemporary Hollywood has turned to conglomeratization. But, what has caused such a radical shift in the form and function of Contemporary Hollywood and its films? This thesis argues that Hollywood is failing to thrive in this new media landscape¿not because of changing technologies¿but because of a changing consumer. Richard Lanham theorizes that we are living in a growing attention economy, where human attention is the most valuable commodity in such an information-saturated society. For the current consumer, there is near-constant media over-stimulation: he or she is exposed to any number of screens (mobile phones, laptops, tablets, televisions, etc.) at any given time. Because we can access anything from anywhere at anytime, we¿ve become somewhat schizophrenic and impatient in terms of the media that we consume in our lives.
Resumo:
The role of low-level stimulus-driven control in the guidance of overt visual attention has been difficult to establish because low- and high-level visual content are spatially correlated within natural visual stimuli. Here we show that impairment of parietal cortical areas, either permanently by a lesion or reversibly by repetitive transcranial magnetic stimulation (rTMS), leads to fixation of locations with higher values of low-level features as compared to control subjects or in a no-rTMS condition. Moreover, this unmasking of stimulus-driven control crucially depends on the intrahemispheric balance between top-down and bottom-up cortical areas. This result suggests that although in normal behavior high-level features might exert a strong influence, low-level features do contribute to guide visual selection during the exploration of complex natural stimuli.
Resumo:
The deterioration of performance over time is characteristic for sustained attention tasks. This so-called "performance decrement" is measured by the increase of reaction time (RT) over time. Some behavioural and neurobiological mechanisms of this phenomenon are not yet fully understood. Behaviourally, we examined the increase of RT over time and the inter-individual differences of this performance decrement. On the neurophysiological level, we investigated the task-relevant brain areas where neural activity was modulated by RT and searched for brain areas involved in good performance (i.e. participants with no or moderate performance decrement) as compared to poor performance (i.e. participants with a steep performance decrement). For this purpose, 20 healthy, young subjects performed a carefully designed task for simple sustained attention, namely a low-demanding version of the Rapid Visual Information Processing task. We employed a rapid event-related functional magnetic resonance imaging (fMRI) design. The behavioural results showed a significant increase of RT over time in the whole group, and also revealed that some participants were not as prone to the performance decrement as others. The latter was statistically significant comparing good versus poor performers. Moreover, high BOLD-responses were linked to longer RTs in a task-relevant bilateral fronto-cingulate-insular-parietal network. Among these regions, good performance was associated with significantly higher RT-BOLD correlations in the pre-supplementary motor area (pre-SMA). We concluded that the task-relevant bilateral fronto-cingulate-insular-parietal network was a cognitive control network responsible for goal-directed attention. The pre-SMA in particular might be associated with the performance decrement insofar that good performers could sustain activity in this brain region in order to monitor performance declines and adjust behavioural output.
Resumo:
This cross-sectional study examined the performance of children born very preterm and/or at very low birth weight (VPT/VLBW) and same-aged term-born controls in three core executive functions: inhibition, working memory, and shifting. Children were divided into two age groups according to the median (young, 8.00-9.86 years; old, 9.87-12.99 years). The aims of the study were to investigate whether (a) VPT/VLBW children of both age groups performed poorer than controls (deficit hypothesis) or caught up with increasing age (delay hypothesis) and (b) whether VPT/VLBW children displayed a similar pattern of performance increase in executive functions with advancing age compared with the controls. Fifty-six VPT/VLBW children born in the cohort of 1998-2003 and 41 healthy-term-born controls were recruited. All children completed tests of inhibition (Color-Word Interference Task, Delis-Kaplan Executive Function System (D-KEFS)), working memory (Digit Span Backwards, HAWIK-IV), and shifting (Trail Making Test, Number-Letter Sequencing, D-KEFS). Results revealed that young VPT/VLBW children performed significantly poorer than the young controls in inhibition, working memory, and shifting, whereas old VPT/VLBW children performed similar to the old controls across all three executive functions. Furthermore, the frequencies of impairment in inhibition, working memory and shifting were higher in the young VPT/VLBW group compared with the young control group, whereas frequencies of impairment were equal in the old groups. In both VPT/VLBW children and controls, the highest increase in executive performance across the ages of 8 to 12 years was observed in shifting, followed by working memory, and inhibition.
Resumo:
Transcranial magnetic stimulation has evolved into a powerful neuroscientific tool allowing to interfere transiently with specific brain functions. In addition, repetitive TMS (rTMS) has long-term effects (e.g. on mood), probably mediated by neurochemical alterations. While long-term safety of rTMS with regard to cognitive functioning is well established from trials exploring its therapeutic efficacy, little is known on whether rTMS can induce changes in cognitive functioning in a time window ranging from minutes to hours, a time in which neurochemical effects correlated with stimulation have been demonstrated. This study examined effects of rTMS on three measures of executive function in healthy subjects who received one single rTMS session (40 trains of 2 s duration 20 Hz stimuli) at the left dorsolateral prefrontal cortex (DLPFC). Compared to a sham condition one week apart, divided attention performance was significantly impaired about 30-60 min after rTMS, while Stroop-interference and performance in the Wisconsin Card Sorting Test was unaffected after rTMS. Repetitive TMS of the left DLPFC, at stimulation parameters used in therapeutic studies, does not lead to a clinically relevant impairment of executive function after stimulation. However, the significant effect on divided attention suggests that cognitive effects of rTMS are not limited to the of acute stimulation, and may possibly reflect known neurochemical alterations induced by rTMS. Sensitive cognitive measures may be useful to trace those short-term effects of rTMS non-invasively in humans.
Resumo:
gamma-tocopherol is the major form of vitamin E in many plant seeds and in the US diet, but has drawn little attention compared with alpha-tocopherol, the predominant form of vitamin E in tissues and the primary form in supplements. However, recent studies indicate that gamma-tocopherol may be important to human health and that it possesses unique features that distinguish it from alpha-tocopherol. gamma-Tocopherol appears to be a more effective trap for lipophilic electrophiles than is alpha-tocopherol. gamma-Tocopherol is well absorbed and accumulates to a significant degree in some human tissues; it is metabolized, however, largely to 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), which is mainly excreted in the urine. gamma-CEHC, but not the corresponding metabolite derived from alpha-tocopherol, has natriuretic activity that may be of physiologic importance. Both gamma-tocopherol and gamma-CEHC, but not alpha-tocopherol, inhibit cyclooxygenase activity and, thus, possess antiinflammatory properties. Some human and animal studies indicate that plasma concentrations of gamma-tocopherol are inversely associated with the incidence of cardiovascular disease and prostate cancer. These distinguishing features of gamma-tocopherol and its metabolite suggest that gamma-tocopherol may contribute significantly to human health in ways not recognized previously. This possibility should be further evaluated, especially considering that high doses of alpha-tocopherol deplete plasma and tissue gamma-tocopherol, in contrast with supplementation with gamma-tocopherol, which increases both. We review current information on the bioavailability, metabolism, chemistry, and nonantioxidant activities of gamma-tocopherol and epidemiologic data concerning the relation between gamma-tocopherol and cardiovascular disease and cancer.
Resumo:
Interhemispheric imbalance is discussed as a pathophysiological mechanism in visuospatial neglect. It is suggested that after a lesion of the right hemisphere the mutual transcallosal inhibition is impaired, resulting in an increased activity of the left hemisphere. We investigated the interhemispheric balance of attention in healthy subjects by using a free visual exploration task and by interfering with the neural activity of the posterior parietal cortex (PPC) of either hemisphere using an inhibitory transcranial magnetic stimulation routine with theta burst stimulation (TBS). Subjects explored colour photographs of real-life scenes presented on a computer screen under four conditions: (i) without TBS; (ii) after TBS over the right PPC; (iii) after TBS over the left PPC; and (iv) after TBS over the right PPC and, after the first half of the task, over the left PPC. Eye movements were measured, and distribution of mean cumulative fixation duration over screen halves was analyzed. TBS over the right PPC resulted in a significant rightward shift of mean cumulative fixation duration of approximately 30 min. The shift could be reversed when a subsequent train of TBS was applied over the left PPC. However, left PPC stimulation alone had no significant effect on visual exploration behaviour. The present study shows that the effect of TBS on the PPC depends on which hemisphere is stimulated and on the state of the contralateral homologue area. These findings are in accordance with the predictions of the interhemispheric rivalry model in neglect.
Resumo:
The aim of the present single case study was to investigate oculomotor recovery in a patient with simultanagnosia due to biparietal hypoxic lesions. Applying visual exploration as well as basic oculomotor tasks in three consecutive test sessions--i.e. 8 weeks, 14 weeks, and 37 weeks after brain damage had occurred--differential recovery was observed. While visual exploration remarkably improved, an impaired disengagement of attention persisted. The improvement of exploration behaviour is interpreted within an oculomotor network theory and implications for a deficit-specific recovery from simultanagnosia are discussed.
Resumo:
Several studies on hemineglect have reported that patients recover remarkably well when assessed with neuropsychological screening tests, however, they show deficits on novel or complex tasks. We investigated whether such deficits can be revealed with eye movement analysis, applying two basic oculomotor tasks as well as two exploratory tasks. Eye movements were recorded in eight hemineglect patients at least eleven months after right-hemisphere brain damage had occurred. Sixteen healthy volunteers participated in the control group. Regarding the basic oculomotor tasks, only the overlap task revealed residual deficits in patients, suggesting that a directional deficit in disengaging attention persisted during recovery. Further residual deficits were evident in the exploratory tasks. When everyday scenes were explored, patients showed a bias in early orienting towards the ipsilateral hemispace. In a search task, they demonstrated the same orienting bias as well as a non-directional deficit concerning search times. Moreover, patients preferentially fixated in the contralateral hemispace, but did not benefit from this asymmetry in terms of search times, i.e. they did not detect contralateral targets faster than ipsilateral ones. This suggests a dissociation between oculomotor processes and attentional ones. In conclusion, we have identified behavioural aspects that seem to recover slower than others. A disengagement deficit and biases in early orienting have been the most pronounced residual oculomotor deficits.
Resumo:
In the past few years a great deal of attention has been given to the electrodeposition of alloys. For the main part, this investigation has been of scientific interest only; but in a few instances, such work has attained commercial importance.
Resumo:
When examined petrographically the granites of Oklahoma show a marked similarity to the granites of Southeastern Missouri. The same heavy accessory mineral suites are present in the granites of both regions and include: fluorite, zircon, apatite, titanite and epidote. This similarity was further shown by the actual correlation of the heavy mineral suites by types, these types being, based on the heavy mineral distributions of the Missouri Granites.