893 resultados para AMORPHOUS IRON OXYHYDROXIDE
Resumo:
This paper describes the preparation and characterization of phenolic resins' thermospheres covered by a magnetic phase of iron oxide. The thermospheres were prepared by allowing phenol and formaldehyde to react under dispersion polymerization conditions and the iron oxide phase was incorporated in situ onto the phenolic resin particles by adding concentrated NH3 to FeCl2 in DMSO. This reaction was conducted at 70 degrees C under nitrogen atmosphere in a controlled temperature vessel, and the modified resin was isolated and dried in vacuo. Both pure and modified resins were characterized by DRX, TG- DTA, and MEV/ EDX. The modified particles were attracted by a magnetic field, indicating the fixation of magnetic iron oxide. No diffraction peaks were observed in DRX analysis; thermal analysis ( DTA) of both pure and modified resins presented exothermic events between 300 and 680 degrees C, and 300 and 570 degrees C, respectively, indicating the microstructure of the resin was modified after the treatment. Thermogravimetric analysis ( TGA) of the pure resin registered a 2.0% residue, compared to 8.0% for the modified resin. These residues correspond to about 7.0% of fixed iron oxide. MEV/ EDX analyses confirm the modification of the resins by the process of fixing iron oxide.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hydrogen interaction with oxide films grown on iron electrodes at open circuit potential (E-oc) and in the passive region (+0.30 V-ECS) was studied by chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy techniques. The results were obtained in deaerated 0.3 mol L-1 H3BO3 + 0.075 mol L-1 Na2B4O7 (BB, pH 8.4) solution before, during and after hydrogen permeation. The iron oxide film modification was also investigated by means of in situ X-ray absorption near-edge spectroscopy (XANES) and scanning electrochemical microscopy (SECM) before and during hydrogen permeation. The main conclusion was that the passive film is reduced during the hydrogen diffusion. The hydrogen permeation stabilizes the iron surface at a potential close to the thermodynamic water stability line where hydrogen evolution can occur. The stationary condition required for the determination of the permeation parameters cannot be easily attained on iron surface during hydrogen permeation. Moreover, additional attention must be paid when obtaining the transport parameters using the classical permeation cell. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Mossbauer spectroscopy was used in this study to investigate magnetite nanoparticles, obtained by spray pyrolysis and thermal treatment under H-2 reduction atmosphere. Room temperature XRD data indicate the formation of magnetite phase and a second phase (metallic iron) which amount increases as the time of reduction under H2 is increased. While room temperature Mossbauer data confirm the formation of the cubic phase of magnetite and the occurrence of metallic iron phase, the more complex features of 77 K-Mossbauer spectra suggest the occurrence of electronic localization favored by the different crystalline phase of magnetite at low temperatures which transition to the lower symmetry structure should occur at T similar to 120 K (Verwey transition).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Water-dispersed magnetite nanoparticle synthesis from iron(II) chloride in dimethyl sulfoxide (DMSO)-water solution at different DMSO-water ratios in alkaline medium was reported. TEM and XRD results suggest a single-crystal formation with mean particle size in the range 4-27 nm. Magnetic nanoparticles are formed by the oxidative hydrolysis reaction from green rust species that leads to FeOOH formation, followed by autocatalysis of the adsorbed available Fe(II) on the FeOOH surfaces. The available hydroxyl groups seem to be dependent on the DMSO-water ratio due to strong molecular interactions presented by the solvent mixture. Goethite phase on the magnetite surface was observed by XRD data only for sample synthesized in the absence of DMSO. In addition, cyclic voltammetry with carbon paste electroactive electrode (CV-CPEE) results reveal two reduction peaks near 0 and +400 mV associated with the presence of iron(III) in different chemical environments related to the surface composition of magnetite nanoparticles. The peak near +400 mV is related to a passivate thin layer surface such as goethite on the magnetite nanoparticle, assigned to the intensive hydrolysis reaction due to strong interactions between DMSO-water molecules in the initial solvent mixture that result in a hydroxyl group excess in the medium. Pure magnetite phase was only observed in the samples prepared at 30% (30W) and 80% (80W) water in DMSO in agreement with the structured molecular solvent cluster formation. The goethite phase present on the, magnetite nanoparticle surface like a thin passivate layer only was detectable using CV-CPEE, which is a very efficient, cheap, and powerful tool for surface characterization, and it is able to determine the passivate oxyhydroxide or oxide thin layer presence on the nanoparticle surface.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the search for new therapeutic tools against tuberculosis two novel iron complexes, [Fe(L-H)3], with 3-aminoquinoxaline-2-carbonitrile N(1),N(4)-dioxide derivatives (L) as ligands, were synthesized, characterized by a combination of techniques, and in vitro evaluated. Results were compared with those previously reported for two analogous iron complexes of other ligands of the same family of quinoxaline derivatives. In addition, the complexes were studied by cyclic voltammetry and EPR spectroscopy. Cyclic voltammograms of the iron compounds showed several cathodic processes which were attributed to the reduction of the metal center (Fe(III)/Fe(II)) and the coordinated ligand. EPR signals were characteristic of magnetically isolated high-spin Fe(III) in a rhombic environment and arise from transitions between m(s) = +/- 1/2 (geff-9) or m(s) = +/- 3/2 (g(eff)similar to 4.3) states. Mossbauer experiments showed hyperfine parameters that are typical of high-spin Fe(III) ions in a not too distorted environment. The novel complexes showed in vitro growth inhibitory activity on Mycobacterium tuberculosis H(37)Rv (ATCC 27294), together with very low unspecific cytotoxicity on eukaryotic cells (cultured murine cell line J774). Both complexes showed higher inhibitory effects on M. tuberculosis than the "second-line" therapeutic drugs. (C) 2010 Elsevier B.V. All rights reserved.