974 resultados para ALKYLPHOSPHINE OXIDES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the applications of Auger electron spectroscopy in surface analysis have by far outweighed its use as a tool to investigate electron states of solids and surfaces, there are a variety of situations where Auger spectroscopy provides unique information. Apart from the chemical shifts, Auger intensities are useful in determining the number of d-electron states in transition metal systems. Auger spectroscopy is a good probe to investigate the surface oxidation of metals. In addition to the intra-atomic Auger transitions, inter-atomic transitions observed in oxides and other systems reveal the nature of electron states of surfaces. Charge-transfer and hybridization effects in alloys are also usefully studied by Auger spectroscopy. Auger electron spectroscopy has not been a popular technique to investigate adsorption of molecules on surfaces, but the technique is useful to obtain fingerprints of surface species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface oxidation of Cd, In, Sn and Sb has been investigated by employing valence bands, metal 4d levels and plasmon bands in X-ray photoelectron spectra. O(KLL), metal M4N45N45, and plasmon transitions in electron-induced Auger spectra as well as Auger transitions due to the metal (metal oxide) and plasmons in X-ray-induced Auger spectra. The surface oxides are In2O4, CdO and a mixture of SnO and SnO2 in the case of In. Cd and Sn respectively. The facility of surface oxidation is found to vary as In>Cd>Sn>Sb. Inter-atomic Auger transitions involving oxygen valence bands have been identified on oxidized surfaces of Cd and In.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that Tl2Ca2Ba2Cu3O10+δ (2223), the n=3 member of the Tl2O2. Can�1Ba2CunO2n+2 family shows a Tc (zero-resistance) of 125K (onset 140K) only when it is prepared by the sealed tube ceramic method starting from the 1313 composition. The structure is orthorhombic (Image compared to 30� of 2122), but electron diffraction patterns show two possible orthorhombic structures. Lattice images show the expected local structure and also the presence of dislocations and intergrowths. Both 2223 and 2122 oxides absorb microwaves (9.1GHz) intensely in the superconducting state, with some hysteresis. XPS measurements show Cu mainly in the 1+ state, suggesting the important role of oxygen holes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological function of nitric oxide and its oxidized forms has received a great deal of attention over the past two decades. However much less attention has been focused on the reduced nitric oxide, nitroxyl (HNO). Unlike NO, HNO is highly reactive species and thus it needs to be generated by using donor compounds under experimental conditions. Currently there is only one donor available, Angeli s salt, which releases HNO in a controlled fashion under pysiological conditions. Prior studies have shown the pro-oxidative and cytotoxic potential of Angeli s salt compared to NO donors. The high reactivity of HNO with cysteine thiols is considered to form the biochemical basis for its unique properties compared to other nitrogen oxides. Such thiol modification cold result in disturbances of vital cellular functions and subsequently to death of disturbance sensitive cells, such as neurons. Therefore modification of proteins and lipids was studied in vitro and the potential neurotoxicity was studied in vivo by local infusion of Angeli s salt into the rat central nervous system. The results show that under aerobic in vitro conditions, HNO can, subsequent to autoxidation, cause irreversible oxidative modification of proteins and lipids. These effects are not however seen in cell culture or following infusion of Angeli s salt directly into the rat central nervous tissue likely due to presence of lower oxygen and higher thiol concentration. However, due to high reactivity with thiols, HNO can cause irreversible inactivation of cysteine modification sensitive enzymes such as cysteine proteases papain in vitro and cathepsin B in cell culture. Furthermore it was shown that infusion of HNO releasing Angeli s salt into the rat central nervous system causes necrotic cell death and motor dysfunction following infusion into the lumbal intrathecal space. In conclusion, the acute neurotoxic potential of Angeli s salt was shown to be relatively low, but still higher compared to NO donors. HNO was shown to affect numerous cellular processes which could result in neurotoxicity if HNO was produced in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The water-gas shift reaction (WGS) is an important reaction to produce hydrogen. In this study, we have synthesized nanosized catalysts where Pt ion is substituted in the +2 state in TiO2, CeO2, and Ce1-xTixO2-delta. These catalysts have been characterized by X-ray diffraction and X-ray photoelectron spectroscopy (XPS), and it has been shown that Pt2+ in these reducible oxides result in solid solutions like Ti0.99Pt0.01O2-delta, Ce0.8Ti0.15Pt0.02O2-delta, and Ce0.98Pt0.02O2-delta. These catalysts were tested for the water gas shift reaction both ill the presence and absence of hydrogen. It was shown that Ti0.99Pt0.01O2-delta exhibited higher catalytic activity than Ce0.83Ti0.15Pt0.02O2-delta and Ce0.98Pt0.02O2-delta. Further, experiments were conducted to determine the deactivation of these catalysts. There was no sintering of Pt and no carbonate formation; therefore, the catalyst did not deactivate even after prolonged reaction. There was no carbonate formation because of the highly acidic nature of Ti4+ ions in the catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal acetate hydrazinates, M(CH3COO)2(N2H4)2 (M = Mn, Co, Ni, Zn, Cd) have been prepared and characterized by chemical analysis and infrared absorption spectra. Thermal decomposition of the complexes has been studied using simultaneous TG-DTG-DTA technique. Metal acetate hydrazinates decompose exothermically through metal acetate intermediates to the respective metal oxides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complexes of lanthanide perchlorates with 4-cyano pyridine-1-oxide, 4-chloro 2-picoline-1-oxide and 4-dimethyl-amino 2-picoline-1-oxide have been isolated for the first time and characterized by analysis, conductance, infrared, NMR and electronic spectra. The complexes of 4-cyano pyridine-1-oxides have the composition Ln(CyPO)6(ClO4)3. 2H2O (Ln=La, Sm, Dy and Ho); Ln(CyPO)7 (ClO4)3. 2H2O (Ln=Pr, Nd, Er and Yb); and Ln(CyPO)5 (ClO4)3. 2H2O (Ln=Gd and Tb). The complexes of 4-chloro 2-picoline-1-oxide analyse for the formulae Ln(CpicO)6 (ClO4)3 (Ln=La, Pr, Nd and Ho); and Ln (CpicO)5 (ClO4)3 (Ln=Er and Yb), and those of 4-dimethylamino 2-picoline-1-oxide for Ln(DMPicO)6 (ClO4)3 (Ln=La and Nd); Ln(DMPicO)7 (ClO4)3 (Ln=Gd, Er and Yb); and Ln(DMPicO)8 (ClO4)3 (Ln=Dy and Ho).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L$_{23}$ M$_{45}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{45}$, L$_{23}$ M$_{45}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{23}$ and L$_{23}$ M$_{23}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{23}$ Auger intensity ratios in transition metal oxides and sulphides are shown to be directly related to the number of valence electrons in the metal as well as to its oxidation state. The metal Auger intensity ratios provide a unique probe, independent of O (KLL) intensity, to study surface oxidation states of metals. These intensity ratios have been effectively employed to investigate surface oxidation of nickel, iron and copper. The oxidation studies have unravelled some interesting aspects of surface oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical characteristics and behaviour of sediment phosphorus in the northeastern Baltic Sea Eutrophication is a severe environmental problem in the Baltic Sea, especially in the Gulf of Finland and the Archipelago Sea, and it is enhanced by the release of phosphorus (P) from bottom sediments. The release of P from sediment reserves largely depends on the occurrence of P in different chemical forms and on the prevailing conditions, especially on the presence of oxygen. This study examines the chemical character and the vertical distribution of sediment P in two shallow estuaries, in shallow coastal sediments overlain by oxic near-bottom water, and in poorly oxygenated open sea sediments in the northeastern Baltic Sea. The objective was to evaluate how much of the sediment P is buried and removed from the nutrient cycle, and how much of it is in forms that can be released from the sediment to the overlaying water over time. Relationships between the distribution of the different P forms and the chemical and physical properties of the sediment, sediment pore water, and near-bottom water were determined in order to examine the behaviour of P at the sediment-water interface. The results show that the chemical character of sediment P varied in the different areas. Generally, in the outer estuaries and in the organic-rich coastal areas in the eastern Gulf of Finland, the sediments were higher in P than the sediments in the poorly oxygenated open sea areas in the central and western Gulf. The estuary sediments that received erosion-transported material were characterised by P bound to hydrated oxides of iron and aluminum. Iron-bound P is sensitive to changes in redox-conditions, but part of it was buried in the estuaries, possibly because of high sedimentation rates and incomplete reduction of iron. The open sea sediments in the central and western Gulf of Finland were dominated by apatite-P, which was also abundant in the areas strongly affected by sediment transportation. The burial of sediment P was most effective in the areas rich in apatite-P, which is a relatively stable form of P in sediment. In the eastern Gulf of Finland, organic P forms predominated in the organic-rich sediments. A part of these P forms will be buried, while part will be degraded in the long term, releasing soluble P to the pore water. In the poorly oxygenated areas, iron compounds at the sediment surface are not able to retain P released during mineralisation of organic matter or reduction-induced dissolution of iron-compounds in deep sediment layers. However, in the shallow coastal areas overlain by oxic near-bottom water, the organic-rich surface sediment can also become temporarily reduced and release P from the sediment to the overlaying water. The considerable variation in the chemical composition of sediment P reserves in the northeastern Baltic Sea proved that it is an important factor and should be taken into account when evaluating the release of sediment P and the role of P reserves in bottom sediments in eutrophication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic susceptibilities of several members of the series of oxides of the general formula LaNi1-xMxO3 (M = Cr, Fe, or Co) are reported. The oxides show evidence for interesting ferrimagnetic (Cr and Co) and antiferromagnetic (Fe) interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased interest in the cholesterol-lowering effect of plant sterols has led to development of plant sterol-enriched foods. When products are enriched, the safety of the added components must be evaluated. In the case of plant sterols, oxidation is the reaction of main concern. In vitro studies have indicated that cholesterol oxides may have harmful effects. Due their structural similarity, plant sterol oxidation products may have similar health implications. This study concentrated on developing high-performance liquid chromatography (HPLC) methods that enable the investigation of formation of both primary and secondary oxidation products and thus can be used for oxidation mechanism studies of plant sterols. The applicability of the methods for following the oxidation reactions of plant sterols was evaluated by using oxidized stigmasterol and sterol mixture as model samples. An HPLC method with ultraviolet and fluorescence detection (HPLC-UV-FL) was developed. It allowed the specific detection of hydroperoxides with FL detection after post-column reagent addition. The formation of primary and secondary oxidation products and amount of unoxidized sterol could be followed by using UV detection. With the HPLC-UV-FL method, separation between oxides was essential and oxides of only one plant sterol could be quantified in one run. Quantification with UV can lead to inaccuracy of the results since the number of double bonds had effect on the UV absorbance. In the case of liquid chromatography-mass spectrometry (LC-MS), separation of oxides with different functionalities was important because some oxides of the same sterol have similar molecular weight and moreover epimers have similar fragmentation behaviour. On the other hand, coelution of different plant sterol oxides with the same functional group was acceptable since they differ in molecular weights. Results revealed that all studied plant sterols and cholesterol seem to have similar fragmentation behaviour, with only relative ion abundances being slightly different. The major advantage of MS detection coupled with LC separation is the capability to analyse totally or partly coeluting analytes if these have different molecular weights. The HPLC-UV-FL and LC-MS methods were demonstrated to be suitable for studying the photo-oxidation and thermo-oxidation reactions of plant sterols. The HPLC-UV-FL method was able to show different formation rates of hydroperoxides during photo-oxidation. The method also confirmed that plant sterols have similar photo-oxidation behaviour to cholesterol. When thermo-oxidation of plant sterols was investigated by HPLC-UV-FL and LC-MS, the results revealed that the formation and decomposition of individual hydroperoxides and secondary oxidation products could be studied. The methods used revealed that all of the plant sterols had similar thermo-oxidation behaviour when compared with each other, and the predominant reactions and oxidation rates were temperature dependent. Overall, these findings showed that with these LC methods the oxidation mechanisms of plant sterols can be examined in detail, including the formation and degradation of individual hydroperoxides and secondary oxidation products, with less sample pretreatment and without derivatization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important safety aspect to be considered when foods are enriched with phytosterols and phytostanols is the oxidative stability of these lipid compounds, i.e. their resistance to oxidation and thus to the formation of oxidation products. This study concentrated on producing scientific data to support this safety evaluation process. In the absence of an official method for analyzing of phytosterol/stanol oxidation products, we first developed a new gas chromatographic - mass spectrometric (GC-MS) method. We then investigated factors affecting these compounds' oxidative stability in lipid-based food models in order to identify critical conditions under which significant oxidation reactions may occur. Finally, the oxidative stability of phytosterols and stanols in enriched foods during processing and storage was evaluated. Enriched foods covered a range of commercially available phytosterol/stanol ingredients, different heat treatments during food processing, and different multiphase food structures. The GC-MS method was a powerful tool for measuring the oxidative stability. Data obtained in food model studies revealed that the critical factors for the formation and distribution of the main secondary oxidation products were sterol structure, reaction temperature, reaction time, and lipid matrix composition. Under all conditions studied, phytostanols as saturated compounds were more stable than unsaturated phytosterols. In addition, esterification made phytosterols more reactive than free sterols at low temperatures, while at high temperatures the situation was the reverse. Generally, oxidation reactions were more significant at temperatures above 100°C. At lower temperatures, the significance of these reactions increased with increasing reaction time. The effect of lipid matrix composition was dependent on temperature; at temperatures above 140°C, phytosterols were more stable in an unsaturated lipid matrix, whereas below 140°C they were more stable in a saturated lipid matrix. At 140°C, phytosterols oxidized at the same rate in both matrices. Regardless of temperature, phytostanols oxidized more in an unsaturated lipid matrix. Generally, the distribution of oxidation products seemed to be associated with the phase of overall oxidation. 7-ketophytosterols accumulated when oxidation had not yet reached the dynamic state. Once this state was attained, the major products were 5,6-epoxyphytosterols and 7-hydroxyphytosterols. The changes observed in phytostanol oxidation products were not as informative since all stanol oxides quantified represented hydroxyl compounds. The formation of these secondary oxidation products did not account for all of the phytosterol/stanol losses observed during the heating experiments, indicating the presence of dimeric, oligomeric or other oxidation products, especially when free phytosterols and stanols were heated at high temperatures. Commercially available phytosterol/stanol ingredients were stable during such food processes as spray-drying and ultra high temperature (UHT)-type heating and subsequent long-term storage. Pan-frying, however, induced phytosterol oxidation and was classified as a rather deteriorative process. Overall, the findings indicated that although phytosterols and stanols are stable in normal food processing conditions, attention should be paid to their use in frying. Complex interactions between other food constituents also suggested that when new phytosterol-enriched foods are developed their oxidative stability must first be established. The results presented here will assist in choosing safe conditions for phytosterol/stanol enrichment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silane undergoes thermal decomposition on the surface of “phosphorus pentoxide” ( P4O10) into its elements around 200–400°C. The hydrogen formed partially reduces the P4O10 forming lower oxides of phosphorus and water. Elemental silicon is precipitated as reddish-brown solid, which is separated by dissolving out the phosphorus oxides. Silica and disiloxane are not formed in the reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoacoustic spectroscopy has been employed to study the electronic spectra of a variety of solids. The systems studied include powders of intensely coloured dyes, amorphous chalcogenides and oxide gels besides polycrystalline samples of several oxide materials. Surface sensitivity of the technique has been examined by study of dye adsorption on oxide surfaces and determination of surface areas of active oxides. Acidic and basic sites on catalyst surfaces have also been estimated by this technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In view of the important need to generate well-dispersed inorganic nanostructures in various solvents, we have explored the dispersion of nanostructures of metal oxides such as TiO2, Fe3O4 and ZnO in solvents of differing polarity in the presence of several surfactants. The solvents used are water, dimethylformamide (DMF) and toluene. The surfactant-solvent combinations yielding the best dispersions are reported alongwith some of the characteristics of the nanostructures in the dispersions. The surfactants which dispersed TiO2 nanowires in water were polyethylene oxide (PEO), Triton X-100 (TX-100), polyvinyl alcohol (PVA) and sodium bis(2-ethylhexyl) sulphosuccinate (AOT). TiO2 nanoparticles could also be dispersed with AOT and PEO in water, and with AOT in toluene. In DMF, PVA, PEO and TX-100 were found to be effective, while in toluene, only AOT gave good dispersions. Fe3O4 nanoparticles were held for long periods of time in water by PEO, AOT, PVA and polyethylene glycol (PEG), and by AOT in toluene. In the case of ZnO nanowires, the best surfactant-solvent combinations were found to be, PEO, sodium dodecyl sulphate (SIDS) and AOT in water and AOT, PEG, PVA, PEO and TX-100 in DMF In toluene, stable dispersions of ZnO nanowires were obtained with PEO. We have also been able to disperse oxide nanostructures in non-polar solvents by employing a hydrophobic silane coating on the surface.