974 resultados para AA AMYLOIDOSIS
Resumo:
From modelling to manufacturing, computers have increasingly become partners in the design process, helping automate many phases once carried out by hand. In the creative phase, computational synthesis methods aim at facilitating designers' task through the automated generation of optimally directed design alternatives. Nevertheless, applications of these techniques are mainly academic and industrial design practice is still far from applying them routinely. This is due to the complex nature of many design tasks and to the difficulty of developing synthesis methods that can be easily adapted to multiple case studies and automated simulation. This work stems from the analysis of implementation issues and obstacles to the widespread use of these tools. The research investigates the possibility to remove these obstacles through the application of a novel technique to complex design tasks. The ability of this technique to scale-up without sacrificing accuracy is demonstrated. The successful results confirm the possibility to use synthesis methods in complex design tasks and spread their commercial and industrial application.
Resumo:
A bottom-up technique for synthesizing transversely suspended zinc oxide nanowires (ZnO NWs) under a zinc nitrate (Zn(NO 3) 2· 6H 2O) and hexamethylenetetramine (HMTA, (CH 2) 6·N 4) solution within a microfabricated device is reported in this paper. The device consists of a microheater which is used to initially create an oxidized ZnO seed layer. ZnO NWs are then locally synthesized by the microheater and electrodes embedded within the devices are used to drive electric field directed horizontal alignment of the nanowires within the device. The entire process is carried out at low temperature. This approach has the potential to considerably simplify the fabrication and assembly of ZnO nanowires on CMOS compatible substrates, allowing for the chemical synthesis to be carried out under near-ambient conditions by locally defining the conditions for nanowire growth on a silicon reactor chip. © 2012 IEEE.
Resumo:
The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High-speed imaging and image analysis are used to determine the angle and the minimum neck size of the cone-shaped extrema of the ligaments attached to dripping droplets in the final microseconds before pinchoff. The angle is shown to steadily approach the value of 18.0 ±0.4, independently of the initial flow conditions or the type of breakup. The filament thins and necks following a τ2 /3 law in terms of the time remaining until pinchoff, regardless of the initial conditions. The observed behavior confirms theoretical predictions. © 2012 American Physical Society.
Resumo:
A combination of singular systems analysis and analytic phase techniques are used to investigate the possible occurrence in observations of coherent synchronization between quasi-biennial and semi-annual oscillations (QBOs; SAOs) in the stratosphere and troposphere. Time series of zonal mean zonal winds near the Equator are analysed from the ERA-40 and ERA-interim reanalysis datasets over a ∼ 50-year period. In the stratosphere, the QBO is found to synchronize with the SAO almost all the time, but with a frequency ratio that changes erratically between 4:1, 5:1 and 6:1. A similar variable synchronization is also evident in the tropical troposphere between semi-annual and quasi-biennial cycles (known as TBOs). Mean zonal winds from ERA-40 and ERA-interim, and also time series of indices for the Indian and West Pacific monsoons, are commonly found to exhibit synchronization, with SAO/TBO ratios that vary between 4:1 and 7:1. Coherent synchronization between the QBO and tropical TBO does not appear to persist for long intervals, however. This suggests that both the QBO and tropical TBOs may be separately synchronized to SAOs that are themselves enslaved to the seasonal cycle, or to the annual cycle itself. However, the QBO and TBOs are evidently only weakly coupled between themselves and are frequently found to lose mutual coherence when each changes its frequency ratio to its respective SAO. This suggests a need to revise a commonly cited paradigm that advocates the use of stratospheric QBO indices as a predictor for tropospheric phenomena such as monsoons and hurricanes. © 2012 Royal Meteorological Society.
Resumo:
The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High-speed imaging and image analysis are used to determine the angle and the minimum neck size of the cone-shaped extrema of the ligaments attached to dripping droplets in the final microseconds before pinchoff. The angle is shown to steadily approach the value of 18.0 ± 0.4°, independently of the initial flow conditions or the type of breakup. The filament thins and necks following a τ(2/3) law in terms of the time remaining until pinchoff, regardless of the initial conditions. The observed behavior confirms theoretical predictions.
Resumo:
This paper reports a micro-electro-mechanical tilt sensor based on resonant sensing principles. The tilt sensor measures orientation by sensing the component of gravitational acceleration along a specified input axis. Design aspects of the tilt sensor are first introduced and a design trade-off between sensitivity, resolution and robustness is addressed. A prototype sensor is microfabricated in a foundry process. The sensor is characterized to validate predictive analytical and FEA models of performance. The prototype is tested over tilt angles ranging over ±90 degrees and the linearity of the sensor is found to be better than 1.4% over the tilt angle range of ±20°. The noise-limited resolution of the sensor is found to be approximately 0.00026 degrees for an integration time of 0.6 seconds. © 2012 IEEE.
Resumo:
This paper investigates the effect of mode-localization that arises from structural asymmetry induced by manufacturing tolerances in mechanically coupled, electrically transduced Si MEMS resonators. We demonstrate that in the case of such mechanically coupled resonators, the achievable series motional resistance (R x) is dependent not only on the quality factor (Q) but also on the variations in the eigenvector of the chosen mode of vibration induced by mode localization due to manufacturing tolerances during the fabrication process. We study this effect of mode-localization both theoretically and experimentally in two pairs of coupled double-ended tuning fork resonators with different levels of initial structural asymmetry. The measured series R x is minimal when the system is close to perfect symmetry and any deviation from structural symmetry induced by fabrication tolerances leads to a degradation in the effective R x. Mechanical tuning experiments of the stiffness of one of the coupled resonators was also conducted to study variations in R x as a function of structural asymmetry within the system, the results of which demonstrated consistent variations in motional resistance with predictions. © 2012 IEEE.
Resumo:
This paper presents a preliminary study which describes and evaluates a multi-objective (MO) version of a recently created single objective (SO) optimization algorithm called the "Alliance Algorithm" (AA). The algorithm is based on the metaphorical idea that several tribes, with certain skills and resource needs, try to conquer an environment for their survival and to ally together to improve the likelihood of conquest. The AA has given promising results in several fields to which has been applied, thus the development of a MO variant (MOAA) is a natural extension. Here the MOAA's performance is compared with two well-known MO algorithms: NSGA-II and SPEA-2. The performance measures chosen for this study are the convergence and diversity metrics. The benchmark functions chosen for the comparison are from the ZDT and OKA families and the main classical MO problems. The results show that the three algorithms have similar overall performance. Thus, it is not possible to identify a best algorithm for all the problems; the three algorithms show a certain complementarity because they offer superior performance for different classes of problems. © 2012 IEEE.
Resumo:
The modelling of the non-linear behaviour of MEMS oscillators is of interest to understand the effects of non-linearities on start-up, limit cycle behaviour and performance metrics such as output frequency and phase noise. This paper proposes an approach to integrate the non-linear modelling of the resonator, transducer and sustaining amplifier in a single numerical modelling environment so that their combined effects may be investigated simultaneously. The paper validates the proposed electrical model of the resonator through open-loop frequency response measurements on an electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. A square wave oscillator is constructed by embedding the same resonator as the primary frequency determining element. Measurements of output power and output frequency of the square wave oscillator as a function of resonator bias and driving voltage are consistent with model predictions ensuring that the model captures the essential non-linear behaviour of the resonator and the sustaining amplifier in a single mathematical equation. © 2012 IEEE.
Resumo:
We report the construction of a new class of micromachined displacement sensors that employ the phenomenon of vibration-mode localization for monitoring minute inertial displacements. It is demonstrated both theoretically and experimentally that the eigenstate-shifted output signal of such mode-localized displacement sensors may be as high as 1000 times greater than corresponding resonant-frequency variations that serve as the output in the more traditional vibratory resonant micromechanical displacement/motion sensors. The high parametric sensitivities attainable in such mode-localized displacement sensors, together with their inherent advantages of improved environmental robustness and electrical tunability, suggest an alternative approach in achieving improved sensitivity and stability in high-resolution displacement transduction. © 1992-2012 IEEE.
Resumo:
The observation of von Kármán type vortices during the impact of water droplets onto a pool of water is reported. Shadowgraph imaging and laser-sheet visualization are used to document these events. The appearance of these vortices occurs within theoretically predicted regions in a Reynolds-splash number parameter space. In addition, and also in agreement with theoretical predictions, smooth splashing, with vortices absent, is found for smaller Reynolds number. © 2012 American Physical Society.
Resumo:
The observation of von Kármán type vortices during the impact of water droplets onto a pool of water is reported. Shadowgraph imaging and laser-sheet visualization are used to document these events. The appearance of these vortices occurs within theoretically predicted regions in a Reynolds-splash number parameter space. In addition, and also in agreement with theoretical predictions, smooth splashing, with vortices absent, is found for smaller Reynolds number.
Resumo:
This work presents a new method to generate droplets with diameters significantly smaller than the nozzle from which they emerge. The electrical waveform used to produce the jetting consists of a single square negative pulse. The negative edge of the pressure wave pulls the meniscus in, overturning the surface in such a way that a cavity is created. This cavity is then forced to collapse under the action of the positive edge of the pressure wave. This violent collapse produces a thin jet that eventually breaks up and produces droplets. Four droplet generator prototypes that demonstrate the capabilities of this novel mechanism are described. It is also shown that the proposed mechanism extends the existing limits of the commonly accepted inkjet operating regime.