885 resultados para 770403 Living resources (flora and fauna)
Resumo:
The Transboundary Diagnosis Analysis(TDA) quantifies and ranks water-related environmental transboundary issues and their causes according to the severity of environmental and/or socio-economic impacts. The three main issues in BOBLME are; overexploitation of marine living resources; degradation of mangroves, coral reefs and seagrasses; pollution and water quality.
Resumo:
The objectives of the education programme included: making the fishing community and the younger generation aware of the importance of conserving marine resources; to obtain their suggestions and opinions; and to identify gaps and needs to strengthen local participation.
Resumo:
Objectives included; a contribution to understanding large-scale processes affecting the Bay of Bengal Large Marine Ecosystem Project (BOBLME) and it's living resources; and to align with International Indian Ocean Expedition (IIOE-2) (2015-2020) which will extensively explore and study the Indian Ocean to improve understanding of the ocean and coupled climate processes.
Resumo:
The book is written by Mariarosa Dalla Costa and Monica Chilese; translated by Silvia Federici; Common Notions; NY.2014. It is a vigorous critique of where globalization and industrialization in fishing have led global water resources to, and the direct role that humankind has played in this destructive relationship.
Resumo:
Lake Victoria, besides being the second largest in the world after Lake Superior, is the largest tropical lake. Its waters are shared by Kenya (6% of the surface area), Uganda (43%), and Tanzania (51%). Before dramatic structural and functional changes manifested in the lake's ecosystem especially in the 1980s, fish life flourished in the lake's entire water column at all times of the year. Currently, the situation is much more different from what it was in the past. The exponential increase in the introduced Nile perch (Lates niloticus) and Nile tilapia (Oreochromis niloticus) stocks, siltation, wetland degradation and eutrophication have characterised the lake ecosystem. The two exotic species and the small native cyprinid (Rastrineobola argentea) form the basis of the commercial fishery that was once dominated by two native tilapiines (Oreochromis esculentus and Oreochromis variabilis) and five other large-bodied endemic fishes. Severe deoxygenation observed at shallow depths (Ochumba 1990; Hecky et al., 1994) indicates that a large volume of the lake is unable to sustain fish life. The Lake Victoria catchment is one of the most densely populated areas in East Africa, encompassing a population of about 30 million people. Widespread poverty resulting from high inflation rates, lack of opportunities and general unemployment have characterised the lakeside communities over much of the last two decades. The biophysical environment in which Lake Victoria exists makes the lake particularly susceptible to changes that occur as a result of human modification to the watershed or the lake itself, thus rendering benefits from the lake unsustainable.
Resumo:
Until the 1970s, Lake Victoria had a multi-species fishery dominated by the tilapiine and haplochromine cichlids. There were important subsidiary fisheries for more than 20 genera of non-cichlid fishes, including catfishes (Bagrus docmak, Clarias gariepinus, Synodontis spp and Schilbe intermedius), the lungfish (Protopterus aethiopicus) and Labeo victorianus) (Kudhongania and Cordone 1974). Stocks of most of these species declined and others disappeared following the introduction of four tilapiines (Oreochromis niloticus, Oreochromis leucostictus, Tilapia rendalli and Tilapia zillit) and Nile perch (Lates niloticus) during the 1950s. Since then the commercial fishery in the Uganda portion of Lake Victoria has been dominated by the Nile perch, Nile tilapia (Oreochromis niloticus) and the native cyprinid species, Rastrineobola argentea (Mukene).
Resumo:
As a fishery, the immensely large (c. 68,800 km2 ) Lake Victoria is a unique ecosystem which together with a riverine connection to the Lake Kyoga basin share a common endemic "Victorian" fish fauna (Greenwood 1966). Until the 1950s, the single socio economically most important species of fish in these two lakes was the native Oreochromis esculentus Graham (Graham 1929) even though the lake also contained a second native tilapiine, 0reochromis variabilis , and over 300 other fish species (Beauchamp, 1956).
Resumo:
Rastrineobola argentea locally known as mukene in Uganda, omena in Kenya and dagaa in Tanzania occurs in Lake Nabugabo, Lake Victoria, the Upper Victoria Nileand Lake Kyoga (Greenwood 1966). While its fishery is well established on Lakes Victoria and Kyoga, the species is not yet exploited on Lake Nabugabo. Generally such smaller sized fish species as R. argentea become important commercial species in lakes where they occur when catches of preferred largersized table fish start showing signs ofdecline mostly as a result of overexploitation. With the current trends of declining fish catches on Lake Nabugabo, human exploitation of mukene on this lake is therefore just a matter of time. The species is exploited both for direct human consumption and as the protein ingredient in the manufacture of animal feeds.
Resumo:
Most of the earth's ecosystems are experiencing slight to catastrophic losses of biodiversity, caused by habitat destruction, alien species introduction, climate change and pollution (Wilcove et al., 1998). These human effects have led to the extinction of native fish species, the collapse of their populations and the loss of ecological integrity and ecosystem functioning (Ogutu-Ohwayo & Hecky, 1991; Witte et al. , 1992a; Mills et al., 1994; Vitousek et al., 1996). Food webs are macro-descriptors of community feeding interactions that can be used to map the flow of materials and nutrients in ecosystems (Jepsen & Winemiller, 2002). Comparative food web studies have been used to address theoretical questions such as 'does greater trophic connectivity increase stability?' (Cohen et al., 1990), and 'does the number of trophic levels increase with productivity?' (Briand & Cohen, 1987). Answers to such questions have obvious applications for natural resources management. From a multi-species fisheries standpoint, there is a need to understand consumer-resource dynamics within complex trophic networks.
Resumo:
Lake Victoria is the second largest lake in the world (69000km2) by surface area, but it is the shallowest (69m maximum depth) of the African Great Lakes. It is situated across the equator at an altitude of 1240m and lies in a shallow basin between two uplifted ridges of the eastern and western rift valleys (Beadle 1974). Despite their tropical locations, African lakes exhibit considerable seasonality related to the alteration of warm, wet and cool, dry seasons and the accompanying changes in lucustrine stratification and mixing (Tailing, 1965; 1966; Melack 1979; Hecky& Fee 1981; Hecky& Kling,1981; 1987; Bootsma 1993; Mugidde 1992; 1993). Phytoplankton productivity, biomass and species composition change seasonally in response to variations in light environment and nutrient availability which accompany changes in mixed layer depth and erosion or stabilization of the metalimnion / hypolimnion (Spigel & Coulter 1996; Hecky et al., 1991; Tailing 1987). Over longer, millennial time scales, the phytoplankton communities of the African Great Lakes have responded to variability in the EastAfrican climate (Johnson 1996; Haberyan& Hecky, 1986) which also alters the same ecological factors (Kilham et al., 1986). Recently, over the last few decades, changes in external and or internal factors in Lake Victoria and its basin have had a profound inlluence on the planktic community of this lake (Hecky, 1993; Lipiatou et al., 1996). The lake has experienced 2-10x increases in chlorophyll and 2x increase in primary productivity since Tailing's observations in the early 1960s (Mugidde 1992, 1993). In addition to observed changes in the lake nutrient chemistry (Hecky & Mungoma, 1990; Hecky & Bugenyi 1992; Hecky 1993; Bootsma & Hecky 1993), the deep waters previouslyoxygenated to the sediment surface through most of the year are now regularly anoxic(Hecky et al., 1994).
Resumo:
Invertebrates constitute a major link in energy flow culminating into fish production in aquatic ecosystems. In tropical water bodies relatively little research has been done on invertebrate ecology especially their role in fishery production. European scientists through periodic expeditions to Africa in the last quarter of the 20th century carried out the earliest research on zooplankton. Rzoska (1957) listed these early workers including Stuhlmann (1888), Weltner (1897) and Mrazek (1897-1898). Daday (1907), Verestchagin (1915) and Delachaux (1917) undertook further work during the early twentieth century. These earlyworks provide a useful basis for tracking community changes by comparison with modem investigations. Worthington (1931) provided the first quantitative account of the zooplankton of Lake Victoria along with information on diurnal vertical migrations, compared to a temperate lake. The establishment of the East African Freshwater Fisheries Research Organisation (EAFFRO) at Jinja in 1947 enabled investigations on the fisheries, algae, invertebrates and water quality aspects of the lake (EAFFRO Annual Reports 1947-1977) to be regularly carried out. Macdonald (1956) made the first detailed observations on the biology of chaoborids and chironomids (IakefJies) in relation to the feeding of the elephant snout fish, Mormyrus kannume. A detailed study of the biology of the mayfly, Povilla adusta Navas with special reference to the diurnal rhythms of activity was carried out by Hartland-Rowe (1957). The search to unravel the ecological role of aquatic invertebrates in the production dynamics of the lake has taken invertebrate research to greater heights through recent investigations including Okedi (1990), Mavut
Resumo:
The study was undertaken to generate socio-economic information on fish market systems and performance of the industrial processing industry, which will guide the processes leading to modernization of the fisheries sector and, sustainability of Lake Victoria fisheries. The main objective of this study was to evaluate the socio-economic implications of the fish marketing systems with particular emphasis on fish export market in Uganda. The study thus, analysed the socio-economic characteristics of fishers and examinined fish marketing systems and the impacts on the fishing activities, food security, employment opportunities and incomes of fisher-folk communities.
Resumo:
The initial subsistence fisheries of Lake Victoria were dominated by two indigenous tilapiines, Oreochromis esculentus (Graham 1929) and Oreochromis variabilis Boulenger 1906, exploited with simple fishing crafts and gears that had little impact on the fish stocks (Jackson 1971). Commercial fisheries, targeting the tilapia fishery, started at the beginning of the 20th Centurywhen cotton flax gillnets were first introduced in 1905 into the Nyanza Gulf in Kenya. Gillnets were quickly adopted around the whole lake and consequently, the native methods of fishing soon died out (Jackson 1971). Following the introduction of gillnets, fishing boats and their propulsion methods were also improved. These improvements in fishing capacity coincided with development of urban centres and increasing human population around the lake, which increased the demand for fishery products. To satisfy the increasing demand, fishing effort increased greatly during the 20th century, despite the decline of catch per unit of effort (CPUE) (Jackson 1971; Ogutu-Ohwayo 1990). The initial catch rates of 127mm (5 inch) mesh size gill nets in the tilapia-based fishery, in 1905, was in the range of 50 to 100 fish per gillnet of approximately 50 m in length. However, twenty years later, the catch rates of gillnets of the same mesh size had declined to about six fish per net and gillnets of smaller mesh sizes, which had better catch rates, had been introduced suggesting overfishing (Worthington and Worthington, 1933).
Resumo:
Worldwide, human activity in the watershed has been found to induce lake responses at various levels, including at population and ecosystem scale. Recently, Carignan and Steedman (2000) reported on disruptions of biogeochemical cycles in temperate lakes following watershed deforestation and lor wildfire and Carignan et al., (2000 a, b) concluded that water quality and aquatic biota are strongly influenced by disturbances in the watershed. Similarly, Lake Victoria is no exception as people in its catchment have exploited it for the last hundred years or more, but have now begun to understand the extent to which they have thrown the lake into disorder and how their increasing activity in the watershed have driven some environmental changes within and around the lake.
Wetlands and riparian zones as buffers and critical habitats for biotic communities in Lake Victoria
Resumo:
Despite their ecological and socio-economic importance, Lake Victoria's adjoining "swamps" and lake interface are among the least investigated parts of the lake. The "swamps" a term commonly equated to "wastelands" and the difficult working environment they present in comparison to open water, are major factors for the low level of attention accorded to shoreline wetlands. Moreover, definitions of wetlands highlighted for example in the Ramsar Convention as "areas of marsh, fern, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh or brackish, or salt, including areas of marine water, the depth of which does not exceed six metres" (Ramsar, 1971) were designed to protect birds (water fowl) of international importance. The Ramsar definition, which also includes oceans, has till recently been of limited use for Lake Victoria, because itdoes not fully recognise wetlands in relation to other public concerns such as water quality, biodiversity and the tisheries that are of higher socioeconomic priority than waterfowl. Prior to 1992, fishery research on Lake Victoria included studies of inshore shallow habitats of the lake without specific reference to distance or the type of vegetation at the shore. Results of these studies also conveniently relied heavily on trawl and gill net data from the 5-10 m depth zones as the defining boundary of shallow inshore habitats. In Lake Victoria, such a depth range can be at least one kilometre from the lake interface and by the 10m depth contour, habitats are in the sub-littoral range. Findings from these studies could thus not be used to make direct inferences on the then assumed importance of Lake Victoria wetlands in general.