913 resultados para 7-hydroxylase Activity
Resumo:
Reactive oxygen species (ROS) are constantly produced by cells that promote cellular oxidative damage and are neutralized by an antioxidant system including superoxide dismutase, glutathione, peroxidase and catalase. Male volunteers were exercised for 20 minutes, three days (60, 70 and 80% of maximum heart rate). Catalase activity and plasma malondialdehyde concentration were measured. The mean age of the volunteers was 25 +/- 7 years, with body mass index 2 of 24.03 +/- 4.32 kg/m(2). Acute exercise training produced an increase of malondialdehyde concentration that was exercise intensity-dependent in young volunteers. However, catalase activity shows a great variability at baseline and the percentual of reduction was exercise intensity-independent in this particular population. Therefore, our study shows that acute cycling exercise promotes an increase of oxidative stress that was exercise intensity-dependent in young volunteers. Furthermore, the antioxidant system measured by catalase activity was effective to counterbalance the ROS production showing a saturation behavior at an intensity of 70% of maximum heart rate.
Resumo:
Reptiles, particularly snakes, exhibit large and quantitatively similar increments in metabolic rate during muscular exercise and following a meal, when they are apparently inactive. The cardiovascular responses are similar during these two states, but the underlying autonomic control of the heart remains unknown. We describe both adrenergic and cholinergic tonus on the heart during rest, during enforced activity and during digestion (24-36h after ingestion of 30% of their body mass) in the snake Boa constrictor. The snakes were equipped with an arterial catheter for measurements of blood pressure and heart rate, and autonomic tonus was determined following infusion of the beta -adrenergic antagonist propranolol (3mg kg(-1)) and the muscarinic cholinoceptor antagonist atropine (3 mg kg-1).The mean heart rate of fasting animals at rest was 26.4 +/- 1.4 min(-1), and this increased to 36.1 +/- 1.4 min(-1) (means +/- S.E.M.; N=8) following double autonomic block (atropine and propranolol). The calculated cholinergic and adrenergic tones were 60.1 +/- 0.3% and 19.8 +/- 2.2%, respectively. Heart rate increased to 61.4 +/- 1.5 min(-1) during enforced activity, and this response was significantly reduced by propranolol (maximum values of 35.8 +/-1.6 min(-1)), but unaffected by atropine. The cholinergic and adrenergic tones were 2.6 +/- 2.2 and 41.3 +/- 1.9 % during activity, respectively. Double autonomic block virtually abolished tachycardia associated with enforced activity (heart rate increased significantly from 36.1 +/- 1.4 to 37.6 +/- 1.3 min(-1)), indicating that non-adrenergic, non-cholinergic effectors are not involved in regulating heart rate during activity. Blood pressure also increased during activity.Digestion was accompanied by an increase in heart rate from 25.6 +/- 1.3 to 47.7 +/- 2.2 min(-1) (N=8). In these animals, heart rate decreased to 44.2 +/- 2.7 min-1 following propranolol infusion and increased to 53.9 +/- 1.8 min-1 after infusion of atropine, resulting in small cholinergic and adrenergic tones (6.0 +/- 3.5 and 11.1 +/- 1.1 %, respectively). The heart rate of digesting snakes was 47.0 +/- 1.0 min(-1) after double autonomic blockade, which is significantly higher than the value of 36.1 1.4 min-1 in double-blocked fasting animals at rest. Therefore, it appears that some other factor exerts a positive chronotropic effect during digestion, and we propose that this factor may be a circulating regulatory peptide, possibly liberated from the gastrointestinal system in response to the presence of food.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The 1.7 angstrom resolution crystal structure of recombinant family G/11 beta-1,4-xylanase (rXynA) from Bacillus subtilis 1A1 shows a jellyroll fold in which two curved P-sheets form the active-site and substrate-binding cleft. The onset of thermal denaturation of rXynA occurs at 328 K, in excellent agreement with the optimum catalytic temperature. Molecular dynamics simulations at temperatures of 298-328 K demonstrate that below the optimum temperature the thumb loop and palm domain adopt a closed conformation. However, at 328 K these two domains separate facilitating substrate access to the active-site pocket, thereby accounting for the optimum catalytic temperature of the rXynA. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Association of class-II phospholipase A(2) (PLA(2)) with aggregated phospholipid substrate results in elevated levels of the Ca2+-dependent hydrolytic activity. The Asp49 residue participates in coordination of the Ca2+ ion cofactor, however, in Lys49-PLA(2) homologues (Lys49-PLA(2)S), substitution of the Asp49 by Lys results in loss of Ca2+ binding and lack of detectable phospholipid hydrolysis. Nevertheless, Lys49-PLA2S cause Ca2+-independent damage of liposome membranes. Bothropstoxin-I is a homodimeric Lys49-PLA(2) from the venom of Bothrops jararacussu, and in fluorescent marker release and dynamic light scattering experiments with DPPC liposomes we demonstrate activation of the Ca2+-independent membrane damaging activity by similar to4 molecules of sodium dodecyl sulphate (SDS) per protein monomer. Activation is accomparlied by significant changes in the intrinsic tryptophan fluorescence emission (ITFE) and near UV circular dichroism (UVCD) spectra of the protein. Subsequent binding of 7-10 SDS molecules results in further alterations in the ITFE and far UVCD spectra. Reduction in the rate of N-bromosuccinimide modification of Trp77 at the dimer interface suggests that initial binding of SDS to this region accompanies the activation of the membrane damaging activity. 1-anilinonaphthalene-8-sulphonic acid binding studies indicate that subsequent SDS binding to the active site is concomitant with the second structural transition. These results provide insights in the structural basis of amphiphile/protein coupling in class-II PLA(2)s. (C) 2004 Published by Elsevier B.V.
Resumo:
Lipases from oilseeds have a great potential for commercial exploration as industrial enzymes. Lipases are used mixed with surfactants in cleaning and other formulated products, and accordingly, both components must be compatible with each other. This work presents the results of the effects of anionic, cationic and nonionic surfactants, polyethylene glycol and urea on the activity and stability of a lipase extracted of oilseeds from Pachira aquatica. The enzyme was purified and the spectrophotometric assays were done using p-nitrophenyl acetate (p-NPA) as substrate pH 7.5 and 25 degrees C. The activity was significantly enhanced by the cationic surfactant CTAB. Bile salts increased the lipase activity in the tested concentration range, whereas anionic and nonionic surfactants showed an inhibitory effect. Aqueous solutions of PEG activated the lipase and maximum activation (161%) occurred in PEG 12,000. This effect on lipase that can be due to exposition of some hydrophobic residues located in the vicinity of the active site or aggregation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The potential use of acetylcholinesterase (AChE) and metallothionein (MT) responses as biomarker of organophosphorous (OPs) and trace metal were assessed in fish Seriola dumerilli exposed to 0, 4, 6 mg/kg of malathion for 2, 7 and 13 days, and to 0, 50, 100, 250 mu g/kg of Cd for 2 days. Brain AChE was significantly inhibited after 2 and 7 days of malathion exposure, in a dose-response manner, but no inhibition was observed after 13 days of exposure. When exposed to Cd for 2 days, S. dumerelli presented an increase in AChE activity at a concentration of 50 mu g/kg, but a strong and dose-dependent AChE inhibition at 100 and 250 mu g/kg. Cd treatment also caused a rapid increase in MTs concentration in liver, even at the lower concentration. Our experiments indicate that the measurement of hepatic MT concentration and brain AChE activity in S. dumerilli would be useful biomarkers of OP and Cd exposure and/or effects.
Resumo:
Objective: The objective of this study was to compare the antimicrobial effect of mouthwashes containing Calendula officinalis L., Camellia sinensis (L.) Kuntze and 0.12% chlorhexidine digluconate on the adherence of microorganisms to suture materials after extraction of unerupted third molars. Material and Methods: Eighteen patients with unerupted maxillary third molars indicated for extraction were selected (n=6 per mouthwash). First, the patients were subjected to extraction of the left tooth and instructed not to use any type of antiseptic solution at the site of surgery (control group). After 15 days, the right tooth was extracted and the patients were instructed to use the Calendula officinalis, Camellia sinensis or chlorhexidine mouthwash during 1 week (experimental group). For each surgery, the sutures were removed on postoperative day 7 and placed in sterile phosphate-buffered saline. Next, serial dilutions were prepared and seeded onto different culture media for the growth of the following microorganisms: blood agar for total microorganism growth; Mitis Salivarius bacitracin sucrose agar for mutans group streptococci; mannitol agar for Staphylococcus spp.; MacConkey agar for enterobacteria and Pseudomonas spp., and Sabouraud dextrose agar containing chloramphenicol for Candida spp. The plates were incubated during 24-48 h at 37 degrees C for microorganism count (CFU/nnL). Results: The three mouthwashes tested reduced the number of microorganisms adhered to the sutures compared to the control group. However, significant differences between the control and experimental groups were only observed for the mouthwash containing 0.12% chlorhexidine digluconate. Conclusions: Calendula officinalis L. and Camellia sinensis (L.) Kuntze presented antimicrobial activity against the adherence of microorganisms to sutures but were not as efficient as chlorhexidine digluconate.
Resumo:
Objective: The purpose of this study was to evaluate the action of sodium hypochlorite (NaOCl) associated with an intracanal medication against Candida albicans and Enterococcus faecalis inoculated in root canals. Material and Methods: Thirty-six human single-rooted teeth with single root canals were used. The canals were contaminated with C. albicans and E. faecalis for 21 days and were then instrumented with 1% NaOCl. The roots were divided into 3 groups (n=12) according to the intracanal medication applied: calcium hydroxide paste, 2% chlorhexidine (CHX) gel, and 2% CHX gel associated with calcium hydroxide. The following collections were made from the root canals: a) initial sample (IS): 21 days after contamination (control), b) S1: after instrumentation, c) S2: 14 days after intracanal medication placement; S3: 7 days after intracanal medication removal. The results were analyzed statistically by the Kruskal-Wallis test at 5% significance level. Results and Conclusions: Both 1% NaOCl irrigation and the intracanal medications were effective in eliminating E. faecalis and C. albicans inoculated in root canals.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)