932 resultados para 670702 Synthetic resins and rubber
Resumo:
Blends of styrene butadiene rubber (SBR) with maleic anhydride grafted whole tire reclaim (MA-g-WTR) have been prepared and the cure and mechanical properties have been studied with respect to the reclaim content. The grafting was carried out in the presence of dicumylperoxide (DCP) in a Brabender Plasticorder at 150'C. The presence of anhydride group on the WTR was confirmed by infrared spectrometry (IR) study. The properties were compared with those of the blends containing unmodified WTR. Though the cure time was marginally higher, the mechanical properties of the blends containing grafted WTR were better than that of the unmodified blends.
Resumo:
Blends of nitrile rubber and reclaimed rubber containing different levels of a coupling agent, Si 69 (bis(3- triethoxysilyl propyl)(tetrasulphide) were prepared and the cure characteristic's and mechanical properties were studied. Optimum loading of Si-69 was found to be a function of blend ratio. 3 phi- of Si 69 in a 70:30. Blend was found to be the optimum combination with respect to the mechanical properties. The rate and state of cure were also affected bv the conp/ing agent. Tensile strength, tear strength and abrasion resistance were improved in the presence of coupling agent. While the state of cure improved, the cure rate and scorch time decreased with increasing silane content. Ageing studies showed that the blends containing the coupling agent were inferior to the unmodified blends.
Resumo:
Chloroprene rubber was blended with whole tire reclaimed rubber (WTR) in presence of different levels of a coupling agent Si69 [bis- (3-(triethoxysilyl)propy1)tetrasuIfide] and the cure characteristics and mechanical properties were studied. The rate and state of cure were also affected by the coupling agent. While the cure time was increased, the cure rate and scorch time were decreased with increasing silane content. Tensile strength, tear strength, and abrasion resistance were improved in the presence of coupling agent. Compression set and resilience were adversely affected in presence of silane-coupling agent.Aging studies showed that the blends containing the coupling agent were inferior to the unmodified blends.
Resumo:
Cure characteristics and mechanical properties of short nylon fiber reinforced acrylonitrile butadiene rubber-reclaimed rubber composites were studied. Minimum torque, (maximum-minimum) torque and cure rate increased with fiber concentration. Scorch time and cure time decreased by the addition of fibers. Properties like tensile strength, tear strength, elongation at break, abrasion loss and heat build up were studied in both orientations of fibers. Tensile and tear properties were enhanced by the addition of fibers and were higher in the longitudinal direction. Heat build up increased with fiber concentration and were higher in the longitudinal direction. Abrasion resistance was improved in presence of short fibers and was higher in the longitudinal direction. Resilience increased on the introduction of fibers. Compression set was higher for blends.
Resumo:
The cure characteristics and mechanical properties of short nylon fiber- styrene /whole tyre reclaim (SBR/WTR) composites with and without an interfacial bonding agent based on 4,4 diphenyl methane diisocyanate and polyethylene glycol (MDI/PEG) have been studied. An 80:40 blend of SBR/ WTR reinforced with 20 phr of short nylon fiber has been selected and the MDI/ PEG ratio has been changed from 0.67:1 to 2:1. The minimum and maximum torques increased with isocyanate concentration. The scorch time and cure time showed an initial reduction. The cure rate showed an initial improvement. Tensile strength, tear strength and abrasion resistance increased with MDI/PEG ratio, these values were higher in longitudinal direction. Resilience and compression set increased with isocyanate concentration.
Resumo:
The present study deals with the short isora fibre reinforced natural rubber composites. In recent years there has been a tremendous advancement in the field of science and technology of short fibre reinforced polymer composites. The low density, high strength, high stiffness to weight ratio, excellent durability and design flexibility are the primary reasons for their use in many diversified fields such as air crafts, automobiles, marine industry etc. Compared to the various natural and synthetic fibres used as reinforcement for elastomer composites isora fibre is superior in many aspects. `Isora' is a natural lignocellulosic fibre which is easily available in South India especially in Kerala. The fibre is separated from the bark of the Helicteres isora plant by retting process. This fibre has excellent mechanical properties and is easily amenable to physical and chemical modifications. The study shows that composites with poor interfacial bonding tend to dissipate more energy than that with to interfacial bonding. The mechanical loss also can be related to interfacial bonding. The effect of chemical treatment of isora fibre on damping was also studied. Both in the low and high temperature region which indicates that this composite posseses low damping and hence good interfacial bonding characteristics. Hence these composites are better candidates for high damping applications. Composites with longitudinally oriented fibres showed high storage modulus than transversely oriented ones due to the effective stress transfer between fibre and matrix.
Resumo:
The study deals with the short and long term supply response of the natural rubber in India and to analyse the macro economic environment of NR industry and causative factors of the rubber price crash. It determines the minimum cost of production of natural rubber and to forecast the potential production of NR in India. There is positive response of short run and long run supply to prices. Since correlation analysis show close association between international and domestic price level, international price changes will have its domestic echo. Production and consumption will sustain its rising trend. This makes plans for increasing production estimates show that a mid way level i.e. the range between Rs.32-Rs.38 will give a fair enough profit to the grower in the present situation and provide for the viable sustenance of rubber cultivation. Identification of the SWOT of rubber cultivation would help in supporting rubber cultivation if remedial measures are undertaken with the true spirit. This would help Indian rubber to attain global competitiveness. Then the inflow of valuable foreign exchange will overcome the other economic drawbacks of rubber cultivation
Resumo:
The dynamic mechanical properties such as storage modulus, loss modulus and damping properties of blends of nylon copolymer (PA6,66) with ethylene propylene diene (EPDM) rubber was investigated with special reference to the effect of blend ratio and compatibilisation over a temperature range –100°C to 150°C at different frequencies. The effect of change in the composition of the polymer blends on tanδ was studied to understand the extent of polymer miscibility and damping characteristics. The loss tangent curve of the blends exhibited two transition peaks, corresponding to the glass transition temperature (Tg) of individual components indicating incompatibility of the blend systems. The morphology of the blends has been examined by using scanning electron microscopy. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends. Finally, attempts have been made to compare the experimental data with theoretical models.
Resumo:
Faculty of Marine Sciences, Cochin University of Science and Technology
Resumo:
Magnetism and magnetic materials have been an ever-attractive subject area for engineers and scientists alike because of its versatility in finding applications in useful devices. They find applications in a host of devices ranging from rudimentary devices like loud speakers to sophisticated gadgets like waveguides and Magnetic Random Access Memories (MRAM).The one and only material in the realm of magnetism that has been at the centre stage of applications is ferrites and in that spinel ferrites received the lions share as far as practical applications are concerned.It has been the endeavour of scientists and engineers to remove obsolescence and improve upon the existing so as to save energy and integrate in to various other systems. This has been the hallmark of material scientists and this has led to new materials and new technologies.In the field of ferrites too there has been considerable interest to devise new materials based on iron oxides and other compounds. This means synthesising ultra fine particles and tuning its properties to device new materials. There are various preparation techniques ranging from top- down to bottom-up approaches. This includes synthesising at molecular level, self assembling,gas based condensation. Iow temperature eo-precipitation, solgel process and high energy ball milling. Among these methods sol-gel process allows good control of the properties of ceramic materials. The advantage of this method includes processing at low temperature. mixing at the molecular level and fabrication of novel materials for various devices.Composites are materials. which combine the good qualities of one or more components. They can be prepared in situ or by mechanical means by the incorporation of fine particles in appropriate matrixes. The size of the magnetic powders as well as the nature of matrix affect the processability and other physical properties of the final product. These plastic/rubber magnets can in turn be useful for various applications in different devices. In applications involving ferrites at high frequencies, it is essential that the material possesses an appropriate dielectric permittivity and suitable magnetic permeability. This can be achieved by synthesizing rubber ferrite composites (RFC's). RFCs are very useful materials for microwave absorptions. Hence the synthesis of ferrites in the nanoregirne.investigations on their size effects on the structural, magnetic, and electrical properties and the incorporation of these ferrites into polymer matrixes assume significance.In the present study, nano particles of NiFe204, Li(!5Fe2S04 and Col-e-O, are prepared by sol gel method. By appropriate heat treatments, particles of different grain sizes are obtained. The structural, magnetic and electrical measurements are evaluated as a function of grain size and temperature. NiFel04 prepared in the ultrafine regime are then incorporated in nitrile rubber matrix. The incorporation was carried out according to a specific recipe and for various loadings of magnetic fillers. The cure characteristics, magnetic properties, electrical properties and mechanical properties of these elastomer blends are carried out. The electrical permittivity of all the rubber samples in the X - band are also conducted.
Resumo:
Hevea latex is a natural biological liquid of very complex composition .Besides rubber hydrocarbons,it contains many proteinous and resinous substances,carbohydrates,inorganic matter,water,and others.The Dry Rubber Content (DRC) of latex varies according to season, tapping system,weather,soil conditions ,clone,age of the tree etc. The true DRC of the latex must be determined to ensure fair prices for the latex during commercial exchange.The DRC of Hevea latex is a very familiar term to all in the rubber industry.It has been the basis for incentive payments to tappers who bring in more than the daily agreed poundage of latex.It is an important parameter for rubber and latex processing industries for automation and verious decesion making processes.This thesis embodies the efforts made by me to determine the DRC of rubber latex following different analytical tools such as MIR absorption,thermal analysis.dielectric spectroscopy and NIR reflectance.The rubber industry is still Looking for a compact instrument that is accurate economical,easy to use and environment friendly.I hope the results presented in this thesis will help to realise this goal in the near future.
Resumo:
Composite magnetic materials have the unique advantage of property modification for tailoring devices for various applications. Rubber ferrite composites (RFCs) prepared by incorporating ferrites in rubber matrixes have the advantage of easy mouldability and flexibility. RFCs containing various loadings of nickel zinc ferrite (NZF) (Ni1 xZnxFe2O4) in a natural rubber matrix have been prepared. The cure characteristics and the mechanical properties of these composites were evaluated. The effect of loading on the cure characteristics and tensile properties were also evaluated. It is found that the loading dependence on the cure time and mechanical properties exhibit an identical pattern.
Resumo:
Condoms are widely accepted as a contraceptive for family planning and population control. It is also accepted as the most effective barrier against sexually transmitted diseases, especially AIDS, the incurable disease. But presence of pinholes and low film strength of condoms make it unsuitable for the purpose. Quality improvement of condoms by reducing the pinhole formation and increasing the film strength is thus an essential requirement for population control as well as for preventing the spread of sexually transmitted diseases. Strict implementation of WHO specification of condoms further increases the rejection percentage. This causes higher rejection loss to condom manufacturers because the defects could be identified only at the final stage of processing. If the influence of various factors which cause these defects is known, manufacturers can take remedial measures to reduce the defectives so that rejection loss can be decreased and quality of condoms increased. In the present study, it was proposed to conduct experiments to improve the quality of condoms by reducing the pinhole rejection percentage and increasing the tensile properties, burst volume, and burst pressure. Ageing property improvement also was an important target among other parameters. Until a cure for AIDS is found, a high quality latex condom is the only effective device in the prevention of the spread of HIV, AIDS and STD's. Hence it is all the more necessary to have high quality condoms.
Resumo:
Rubber has become an indispensable material in Ocean technology. Rubber components play critical roles such as sealing, damping, environmental protection, electrical insulation etc. in most under water engineering applications. Technology driven innovations in electro acoustic transducers and other sophisticated end uses have enabled quantum jump in the quality and reliability of rubber components. Under water electro acoustic transducers use rubbers as a critical material in their construction. Work in this field has lead to highly reliable and high performance materials which has enhanced service life of transducers to the extent of 1015 years. Present work concentrates on these materials. Conventional rubbers are inadequate to meet many of the stringent functional of the requirements. There exists large gap of information in the rubber technology of under water rubbers, particularly in the context of under water electro acoustic transducers. Present study is towards filling up the gaps of information in this crucial area. The research work has been in the area of compounding and characterisation of rubbers for use in under water electro acoustic transducers. The study also covers specific material system such as encapsulation material, baffle material, seal material, etc. Life prediction techniques of under water rubbers in general has been established with reference to more than one functional property. This thesis is divided into 6 chapters.