941 resultados para 66-487
Resumo:
The oldest sediments cored at Site 605 are upper Maestrichtian argillaceous limestone (Hole 605, Subunit VB). The terrigeneous silt content of the uppermost Maestrichtian is quite low, averaging about 3%, whereas the carbonate content is high, usually greater than 60%; the silt contains only traces of glauconite (Site 605 chapter, this volume). Within Subunit VB a K/T boundary was defined by planktonic foraminifers. It was expected to be spread over an extended vertical interval because of the continental margin depositional setting. Examination by the shipboard party showed that the K/T boundary occurs in Section 605-66-1, between 70 and 75 cm. At the contact, the foraminiferal Globigerina pseudobulloides Zone (PIc) and the Coccolith Cruciplacolithus primus Subzone (CPla) overlie, respectively, the Abathomphalus mayaroensis and Nephrolithus frequens zones (Site 605). However, the thin K/T boundary clay, which is always present in complete sections, was not found, indicating either that the K/T boundary clay was not present or, more likely, that it was washed away during the coring operation.
Resumo:
The work in this sub-project of ESOP focuses on the advective and convective transforma-tion of water masses in the Greenland Sea and its neighbouring areas. It includes observational work on the sub-mesoscale and analysis of hydrographic data up to the gyre-scale. Observations of active convective plumes were made with a towed chain equipped with up to 80 CTD sensors, giving a horizontal and vertical resolution of the hydrographic fields of a few metres. The observed scales of the penetrative convective plumes compare well with those given by theory. On the mesoscale the structure of homogeneous eddies formed as a result of deep convection was observed and the associated mixing and renewal of the intermediate layers quantified. The relative importance and efficiency of thermal and haline penetrative convection in relation to the surface boundary conditions (heat and salt fluxes and ice cover) and the ambient stratification are studied using the multi year time series of hydro-graphic data in the central Greenland Sea. The modification of the water column of the Greenland Sea gyre through advection from and mixing with water at its rim is assessed on longer time scales. The relative contributions are quantified using modern water mass analysis methods based on inverse techniques. Likewise the convective renewal and the spreading of the Arctic Intermediate Water from its formation area is quantified. The aim is to budget the heat and salt content of the water column, in particular of the low salinity surface layer, and to relate its seasonal and interannual variability to the lateral fluxes and the fluxes at the air-sea-ice interface. This will allow to estimate residence times for the different layers of the Greenland Sea gyre, a quantity important for the description of the Polar Ocean carbon cycle.