840 resultados para 4D Dosimetry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were conducted using the Time of Flight (TOF) method to identify the final product states of the dissociative recombination reaction of krypton and xenon. In the dissociative recombination (DR) reaction the molecular ion breaks up into product atoms whose velocities can be measured. These velocities can then be used to identify the final product states. The DR of krypton had been studied by Shiu and Biondi using spectrometric techniques. They observed the 5p states. Hardy et al. using TOF techniques had observed the 5s states. Mitchell et al. studied the DR of xenon. They observed the 6p and 5d states of xenon. In this laboratory using the TOF method I have recently identified the 5s, 6p and the 4d final states of the DR of krypton. Then I was able to identify the 5d, 7s, 6d, and 6p′ final product states of the DR of xenon. The study of the DR of these heavy inert gases can shed light on the theory of the DR of heavy polyatomic gases, which is not well developed. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Respiratory gating in lung PET imaging to compensate for respiratory motion artifacts is a current research issue with broad potential impact on quantitation, diagnosis and clinical management of lung tumors. However, PET images collected at discrete bins can be significantly affected by noise as there are lower activity counts in each gated bin unless the total PET acquisition time is prolonged, so that gating methods should be combined with imaging-based motion correction and registration methods. The aim of this study was to develop and validate a fast and practical solution to the problem of respiratory motion for the detection and accurate quantitation of lung tumors in PET images. This included: (1) developing a computer-assisted algorithm for PET/CT images that automatically segments lung regions in CT images, identifies and localizes lung tumors of PET images; (2) developing and comparing different registration algorithms which processes all the information within the entire respiratory cycle and integrate all the tumor in different gated bins into a single reference bin. Four registration/integration algorithms: Centroid Based, Intensity Based, Rigid Body and Optical Flow registration were compared as well as two registration schemes: Direct Scheme and Successive Scheme. Validation was demonstrated by conducting experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest phantom imaged using a GE PET/CT System. Iterations were conducted on different size simulated tumors and different noise levels. Static tumors without respiratory motion were used as gold standard; quantitative results were compared with respect to tumor activity concentration, cross-correlation coefficient, relative noise level and computation time. Comparing the results of the tumors before and after correction, the tumor activity values and tumor volumes were closer to the static tumors (gold standard). Higher correlation values and lower noise were also achieved after applying the correction algorithms. With this method the compromise between short PET scan time and reduced image noise can be achieved, while quantification and clinical analysis become fast and precise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation establishes a novel data-driven method to identify language network activation patterns in pediatric epilepsy through the use of the Principal Component Analysis (PCA) on functional magnetic resonance imaging (fMRI). A total of 122 subjects’ data sets from five different hospitals were included in the study through a web-based repository site designed here at FIU. Research was conducted to evaluate different classification and clustering techniques in identifying hidden activation patterns and their associations with meaningful clinical variables. The results were assessed through agreement analysis with the conventional methods of lateralization index (LI) and visual rating. What is unique in this approach is the new mechanism designed for projecting language network patterns in the PCA-based decisional space. Synthetic activation maps were randomly generated from real data sets to uniquely establish nonlinear decision functions (NDF) which are then used to classify any new fMRI activation map into typical or atypical. The best nonlinear classifier was obtained on a 4D space with a complexity (nonlinearity) degree of 7. Based on the significant association of language dominance and intensities with the top eigenvectors of the PCA decisional space, a new algorithm was deployed to delineate primary cluster members without intensity normalization. In this case, three distinct activations patterns (groups) were identified (averaged kappa with rating 0.65, with LI 0.76) and were characterized by the regions of: (1) the left inferior frontal Gyrus (IFG) and left superior temporal gyrus (STG), considered typical for the language task; (2) the IFG, left mesial frontal lobe, right cerebellum regions, representing a variant left dominant pattern by higher activation; and (3) the right homologues of the first pattern in Broca's and Wernicke's language areas. Interestingly, group 2 was found to reflect a different language compensation mechanism than reorganization. Its high intensity activation suggests a possible remote effect on the right hemisphere focus on traditionally left-lateralized functions. In retrospect, this data-driven method provides new insights into mechanisms for brain compensation/reorganization and neural plasticity in pediatric epilepsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Respiratory gating in lung PET imaging to compensate for respiratory motion artifacts is a current research issue with broad potential impact on quantitation, diagnosis and clinical management of lung tumors. However, PET images collected at discrete bins can be significantly affected by noise as there are lower activity counts in each gated bin unless the total PET acquisition time is prolonged, so that gating methods should be combined with imaging-based motion correction and registration methods. The aim of this study was to develop and validate a fast and practical solution to the problem of respiratory motion for the detection and accurate quantitation of lung tumors in PET images. This included: (1) developing a computer-assisted algorithm for PET/CT images that automatically segments lung regions in CT images, identifies and localizes lung tumors of PET images; (2) developing and comparing different registration algorithms which processes all the information within the entire respiratory cycle and integrate all the tumor in different gated bins into a single reference bin. Four registration/integration algorithms: Centroid Based, Intensity Based, Rigid Body and Optical Flow registration were compared as well as two registration schemes: Direct Scheme and Successive Scheme. Validation was demonstrated by conducting experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest phantom imaged using a GE PET/CT System. Iterations were conducted on different size simulated tumors and different noise levels. Static tumors without respiratory motion were used as gold standard; quantitative results were compared with respect to tumor activity concentration, cross-correlation coefficient, relative noise level and computation time. Comparing the results of the tumors before and after correction, the tumor activity values and tumor volumes were closer to the static tumors (gold standard). Higher correlation values and lower noise were also achieved after applying the correction algorithms. With this method the compromise between short PET scan time and reduced image noise can be achieved, while quantification and clinical analysis become fast and precise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation establishes a novel data-driven method to identify language network activation patterns in pediatric epilepsy through the use of the Principal Component Analysis (PCA) on functional magnetic resonance imaging (fMRI). A total of 122 subjects’ data sets from five different hospitals were included in the study through a web-based repository site designed here at FIU. Research was conducted to evaluate different classification and clustering techniques in identifying hidden activation patterns and their associations with meaningful clinical variables. The results were assessed through agreement analysis with the conventional methods of lateralization index (LI) and visual rating. What is unique in this approach is the new mechanism designed for projecting language network patterns in the PCA-based decisional space. Synthetic activation maps were randomly generated from real data sets to uniquely establish nonlinear decision functions (NDF) which are then used to classify any new fMRI activation map into typical or atypical. The best nonlinear classifier was obtained on a 4D space with a complexity (nonlinearity) degree of 7. Based on the significant association of language dominance and intensities with the top eigenvectors of the PCA decisional space, a new algorithm was deployed to delineate primary cluster members without intensity normalization. In this case, three distinct activations patterns (groups) were identified (averaged kappa with rating 0.65, with LI 0.76) and were characterized by the regions of: 1) the left inferior frontal Gyrus (IFG) and left superior temporal gyrus (STG), considered typical for the language task; 2) the IFG, left mesial frontal lobe, right cerebellum regions, representing a variant left dominant pattern by higher activation; and 3) the right homologues of the first pattern in Broca's and Wernicke's language areas. Interestingly, group 2 was found to reflect a different language compensation mechanism than reorganization. Its high intensity activation suggests a possible remote effect on the right hemisphere focus on traditionally left-lateralized functions. In retrospect, this data-driven method provides new insights into mechanisms for brain compensation/reorganization and neural plasticity in pediatric epilepsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cores described are taken during the R/V Thomas Washington ROUNDABOUT Cruise from May 1988 until March 1989 by the Scripps Institute of Oceanography. A total of 159 cores and dredges were recovered and are available at Scripps Institute of Oceanography for sampling and study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basalt samples obtained from the Siqueiros transform fault/fracture zone and the adjacent East Pacific Rise are mostly very fresh oceanic tholeiite and fractionated oceanic tholeiite with Fe+3/ Fe+2 ? 0.25; however, alkali basalts occur in the area as well. The rocks of the tholeiitic suite are ol + pl phyric and ol + pl + cpx phyric basalts, while the alkali basalts are ol and ol + pl phyric. Microprobe analyses of the tholeiitic suite phenocrysts indicate that they are Fo68-Fo86, An58-An75, and augite (Ca34Mg50Fe16). The range of olivine and plagioclase compositions represents the chemical variation of the phenocryst compositions with fractionation. The phenocyrsts in the alkali basalts are Fo81 and An69. The suite of tholeiites comprises a fractionation series characterized by relative enrichment of Fe, Ti, Mn, V, Na, K, and P and depletion of Ca, Al, Mg, Ni, and Cr. The fractionated tholeiites occur on the median ridge (which is a sliver of normal oceanic crust) of the double Siqueiros transform fault, on the western Siqueiros fracture zone, and on the adjoining East Pacific Rise, while the two transform fault troughs contain mostly unfractionated or only slightly fractionated tholeiite. We suggest that the fractionated tholeiites are produced by fractional crystallization of more 'primitive' tholeiitic liquid in a crustal magma chamber below the crest of the East Pacific Rise. This magma chamber may be disrupted by the transform fault troughs, thus explaining the paucity of fractionated tholeiites in the troughs. The alkali basalts are found only on the flanks of a topographic high near the intersection of the northern transform trough with the East Pacific Rise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cores described in this paper were taken in the tropical central Pacific Ocean by Scripps Institution of Oceanography's R/V Alexander Agassiz on the STYX Expedition of April-September 1968. A total of 132 cores were attempted of which 97 were successful. These cores are available at Scripps for sampling and study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le ultime ricerche in campo oncologico sulle cure antitumorali sono indirizzate verso una categoria definita target therapy. In particolare tra le più promettenti, le terapie antiangiogenetiche, il cui scopo primario è quello di limitare l’apporto di sangue al tumore. In questo contesto la Tomografia Computerizzata (TC) perfusionale rappresenta un’importante tecnica di imaging radiologico in grado, teoricamente, di fornire misure quantitative, che permettano una valutazione, anche precoce, della risposta alle terapie antiangiogenetiche. I principali problemi aperti in questo campo riguardano la standardizzazione dei protocolli di acquisizione e di elaborazione delle sequenze perfusionali, che determinano la scarsa riproducibilità dei risultati intra- ed inter-paziente, non consentendone l’uso nella pratica clinica. In letteratura sono presenti diversi studi riguardanti la perfusione dei tumori polmonari, ma vi sono pochi studi sull’affidabilità dei parametri perfusionali calcolati. Questa Tesi si propone di analizzare, quantificare e confrontare gli errori e l’affidabilità dei parametri perfusionali calcolati attraverso la TC perfusionale. In particolare, vengono generate delle mappe di errore ed effettuati dei confronti di diverse regioni del polmone sano. I risultati ottenuti dall’analisi dei casi reali sono discussi al fine di poter definire dei livelli di affidabilità dei parametri perfusionali e di quantificare gli errori che si commettono nella valutazione dei parametri stessi. Questo studio preliminare consentirà, quindi, un’analisi di riproducibilità, permettendo, inoltre, una normalizzazione dei valori perfusionali calcolati nella lesione, al fine di effettuare analisi intra- ed inter-paziente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theoretical and experimental developments in the biomaterials area have been directly applied to different fields of Medicine (odontology, regenerative medicine and radiotherapy). These advances have focused both for diagnosing diseases such as for quantifying degrees of progression. From the perspective of these studies, biomaterials are being designed and manufactured for application in various areas of science, provided advances in diagnostic radiology, radiotherapy dosimetry and calibration of radiotherapy equipment. Develop a phantom from a biomaterial has become a great ally of medicine in the treat patients with oncological diseases, allowing better performance of the equipment in order to reduce damage to healthy tissue due to excessive exposure to radiation. This work used polymers: chitosan and gelatin, for making the polymeric structures and controlled for different types of production and processing, characterizing and evaluating the biopolymer by physical techniques (STL, SEM and DEI) and therefore analyze applicability as phantom mouse lung. It was possible to evaluate the morphology of biomaterials quantitatively by scanning electron microscopy associated with imaging technique. The relevance of this work focuses on developing a phantom from polymeric biomaterials that can act as phantom providing high image contrast when subjected to analysis. Thus, the choice of DEI technique is satisfactory since it is an imaging technique of X-ray high resolution. The images obtained by DEI have shown the details of the internal microstructure of the biomaterial produced which have ≈ 10 μm dimension. The phantoms had made density ranging from 0.08 a 0.13 g/cm3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While it is well known that exposure to radiation can result in cataract formation, questions still remain about the presence of a dose threshold in radiation cataractogenesis. Since the exposure history from diagnostic CT exams is well documented in a patient’s medical record, the population of patients chronically exposed to radiation from head CT exams may be an interesting area to explore for further research in this area. However, there are some challenges in estimating lens dose from head CT exams. An accurate lens dosimetry model would have to account for differences in imaging protocols, differences in head size, and the use of any dose reduction methods.

The overall objective of this dissertation was to develop a comprehensive method to estimate radiation dose to the lens of the eye for patients receiving CT scans of the head. This research is comprised of a physics component, in which a lens dosimetry model was derived for head CT, and a clinical component, which involved the application of that dosimetry model to patient data.

The physics component includes experiments related to the physical measurement of the radiation dose to the lens by various types of dosimeters placed within anthropomorphic phantoms. These dosimeters include high-sensitivity MOSFETs, TLDs, and radiochromic film. The six anthropomorphic phantoms used in these experiments range in age from newborn to adult.

First, the lens dose from five clinically relevant head CT protocols was measured in the anthropomorphic phantoms with MOSFET dosimeters on two state-of-the-art CT scanners. The volume CT dose index (CTDIvol), which is a standard CT output index, was compared to the measured lens doses. Phantom age-specific CTDIvol-to-lens dose conversion factors were derived using linear regression analysis. Since head size can vary among individuals of the same age, a method was derived to estimate the CTDIvol-to-lens dose conversion factor using the effective head diameter. These conversion factors were derived for each scanner individually, but also were derived with the combined data from the two scanners as a means to investigate the feasibility of a scanner-independent method. Using the scanner-independent method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter, most of the fitted lens dose values fell within 10-15% of the measured values from the phantom study, suggesting that this is a fairly accurate method of estimating lens dose from the CTDIvol with knowledge of the patient’s head size.

Second, the dose reduction potential of organ-based tube current modulation (OB-TCM) and its effect on the CTDIvol-to-lens dose estimation method was investigated. The lens dose was measured with MOSFET dosimeters placed within the same six anthropomorphic phantoms. The phantoms were scanned with the five clinical head CT protocols with OB-TCM enabled on the one scanner model at our institution equipped with this software. The average decrease in lens dose with OB-TCM ranged from 13.5 to 26.0%. Using the size-specific method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter for protocols with OB-TCM, the majority of the fitted lens dose values fell within 15-18% of the measured values from the phantom study.

Third, the effect of gantry angulation on lens dose was investigated by measuring the lens dose with TLDs placed within the six anthropomorphic phantoms. The 2-dimensional spatial distribution of dose within the areas of the phantoms containing the orbit was measured with radiochromic film. A method was derived to determine the CTDIvol-to-lens dose conversion factor based upon distance from the primary beam scan range to the lens. The average dose to the lens region decreased substantially for almost all the phantoms (ranging from 67 to 92%) when the orbit was exposed to scattered radiation compared to the primary beam. The effectiveness of this method to reduce lens dose is highly dependent upon the shape and size of the head, which influences whether or not the angled scan range coverage can include the entire brain volume and still avoid the orbit.

The clinical component of this dissertation involved performing retrospective patient studies in the pediatric and adult populations, and reconstructing the lens doses from head CT examinations with the methods derived in the physics component. The cumulative lens doses in the patients selected for the retrospective study ranged from 40 to 1020 mGy in the pediatric group, and 53 to 2900 mGy in the adult group.

This dissertation represents a comprehensive approach to lens of the eye dosimetry in CT imaging of the head. The collected data and derived formulas can be used in future studies on radiation-induced cataracts from repeated CT imaging of the head. Additionally, it can be used in the areas of personalized patient dose management, and protocol optimization and clinician training.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To develop, evaluate and apply a novel high-resolution 3D remote dosimetry protocol for validation of MRI guided radiation therapy treatments (MRIdian® by ViewRay®). We demonstrate the first application of the protocol (including two small but required new correction terms) utilizing radiochromic 3D plastic PRESAGE® with optical-CT readout.

Methods: A detailed study of PRESAGE® dosimeters (2kg) was conducted to investigate the temporal and spatial stability of radiation induced optical density change (ΔOD) over 8 days. Temporal stability was investigated on 3 dosimeters irradiated with four equally-spaced square 6MV fields delivering doses between 10cGy and 300cGy. Doses were imaged (read-out) by optical-CT at multiple intervals. Spatial stability of ΔOD response was investigated on 3 other dosimeters irradiated uniformly with 15MV extended-SSD fields with doses of 15cGy, 30cGy and 60cGy. Temporal and spatial (radial) changes were investigated using CERR and MATLAB’s Curve Fitting Tool-box. A protocol was developed to extrapolate measured ΔOD readings at t=48hr (the typical shipment time in remote dosimetry) to time t=1hr.

Results: All dosimeters were observed to gradually darken with time (<5% per day). Consistent intra-batch sensitivity (0.0930±0.002 ΔOD/cm/Gy) and linearity (R2=0.9996) was observed at t=1hr. A small radial effect (<3%) was observed, attributed to curing thermodynamics during manufacture. The refined remote dosimetry protocol (including polynomial correction terms for temporal and spatial effects, CT and CR) was then applied to independent dosimeters irradiated with MR-IGRT treatments. Excellent line profile agreement and 3D-gamma results for 3%/3mm, 10% threshold were observed, with an average passing rate 96.5%± 3.43%.

Conclusion: A novel 3D remote dosimetry protocol is presented capable of validation of advanced radiation treatments (including MR-IGRT). The protocol uses 2kg radiochromic plastic dosimeters read-out by optical-CT within a week of treatment. The protocol requires small corrections for temporal and spatially-dependent behaviors observed between irradiation and readout.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conventional mechanism of fermion mass generation in the Standard Model involves Spontaneous Symmetry Breaking (SSB). In this thesis, we study an alternate mechanism for the generation of fermion masses that does not require SSB, in the context of lattice field theories. Being inherently strongly coupled, this mechanism requires a non-perturbative approach like the lattice approach.

In order to explore this mechanism, we study a simple lattice model with a four-fermion interaction that has massless fermions at weak couplings and massive fermions at strong couplings, but without any spontaneous symmetry breaking. Prior work on this type of mass generation mechanism in 4D, was done long ago using either mean-field theory or Monte-Carlo calculations on small lattices. In this thesis, we have developed a new computational approach that enables us to perform large scale quantum Monte-Carlo calculations to study the phase structure of this theory. In 4D, our results confirm prior results, but differ in some quantitative details of the phase diagram. In contrast, in 3D, we discover a new second order critical point using calculations on lattices up to size $ 60^3$. Such large scale calculations are unprecedented. The presence of the critical point implies the existence of an alternate mechanism of fermion mass generation without any SSB, that could be of interest in continuum quantum field theory.

Relevância:

10.00% 10.00%

Publicador: