940 resultados para 2G three-axis super-conducting rock magnetometer
Resumo:
We present detailed paleomagnetic and rock magnetic results of rock samples recovered during Leg 173. The Leg 173 cores display a multicomponent magnetization nature. Variations in magnetic properties correlate with changes in lithology that result from differences in the abundance and size of magnetic minerals. The combined investigation suggests that the magnetic properties of the "fresher" peridotite samples from Site 1070 are controlled mainly by titanomagnetite, with a strong Verwey transition in the vicinity of 110 K, and with field- and frequency-dependent susceptibility curves that resemble those of titanomagnetites. These results are in excellent agreement with thermomagnetic characteristics where titanomagnetites with Curie temperature ~580°C were identified from the "fresher" peridotites. In contrast to the magnetic properties observed from the "fresher" peridotites, the low-temperature curves for the "altered" peridotites did not show any Verwey transition. Thermomagnetic analysis using the high-temperature vibrating sample magnetometer also failed to show evidence for titanomagnetites. The remanent magnetization is carried by a thermally unstable mineral that breaks down at ~420°C, probably maghemite. The field- and frequency-dependent relationships are also directly opposite to those in the reversal zone, with no signs of titanomagnetite characteristics. Altogether, these rock magnetic data seem to be sensitive indicators of alteration and support the contention that maghemite is responsible for the magnetic signatures displayed in the altered peridotites of the upper section. The magnetic minerals of the basement rocks from Sites 1068, 1069, and 1070 are of variable particle size but fall within the pseudo-single-domain size range (0.2-14 µm). The average natural remanent magnetization (NRM) intensity of recovered serpenitinized peridotite is typically on the order of 20 mA/m for samples from Site 1068, but ~120 mA/m for samples from Site 1070. The much stronger magnetization intensity of Site 1070 is apparently in excellent agreement with the observed magnetic anomaly high. Nearly half of the NRM intensity remained after 400°C demagnetization, suggesting that the remanence can contribute significantly to the marine magnetic anomaly.
Resumo:
Absolute ages of plutonic rocks from mid-ocean ridges provide important constraints on the scale, timing and rates of oceanic crustal accretion, yet few such rocks have been absolutely dated. We present 206Pb/238U SHRIMP zircon ages from two ODP Drill Holes and a surface sample from Atlantis Bank on the Southwest Indian Ridge. We report ten new sample ages from 26-1430 m in ODP Hole 735B, and one from 57 m in ODP Hole 1105A. Including a previously published age, eleven samples from Hole 735B yield 206Pb/238U zircon crystallization ages that are the same, within error, overlap with the estimated magnetic age and are inferred to date the main period of crustal growth, the average age of analyses is 11.99 ± 0.12 Ma. Any differences in the ages of magmatic series and/or tectonic blocks within Hole 735B are unresolvable and eight well-constrained ages vary from 11.86 ± 0.20 Ma to 12.13 ± 0.21 Ma, a range of 0.27 ± 0.29 Ma, consistent with the duration of crustal accretion observed at the Mid-Atlantic Ridge. An age of 11.87 ± 0.23 Ma from Hole 1105A is within error of ages from Hole 735B and permits previous correlations made between zones of oxide-rich gabbros in each hole. Pb/U zircon ages > 0.5 Ma younger than the magnetic age are recorded in at least three samples from Atlantis Bank, one from Hole 735B and two collected along a fault scarp to the East. These young ages may date one or more off-axis events previously suggested from thermochronologic data and support the interpretation of a complex geological history following crustal accretion at Atlantis Bank. Together with results from the surface of Atlantis Bank, dating has shown that while the majority of Pb/U SHRIMP zircon ages record the short-lived (< 0.5 Ma) phase of crustal accretion on-axis, results from several samples precede and post-date this period by > 1 Ma suggesting a complex and prolonged magmatic/tectonic history for the crust at Atlantis Bank.
Resumo:
A valid assessment of selective aerobic degradation on organic matter (OM) and its impact on OM-based proxies is vital to produce accurate environmental reconstructions. However, most studies investigating these effects suffer from inherent environmental heterogeneities. In this study, we used surface samples collected along two meter-scale transects and one longer transect in the northeastern Arabian Sea to constrain initial OM heterogeneity, in order to evaluate selective aerobic degradation on temperature, productivity and alteration indices at the sediment-water interface. All of the studied alteration indices, the higher plant alkane index, alcohol preservation index, and diol oxidation index, demonstrated that they are sensitive indicators for changes in the oxygen regime. Several export production indices, a cholesterol-based stanol/stenol index and dinoflagellate lipid- and cyst-based ratios, showed significant (more than 20%) change only over the lateral oxygen gradients. Therefore, these compounds do not exclusively reflect surface water productivity, but are significantly altered after deposition. Two of the proxies, glycerol dibiphytanyl glycerol tetraether-based TEX86 sea surface temperature indices and indices based on phytol, phytane and pristane, did not show any trends related to oxygen. Nevertheless, unrealistic sea surface temperatures were obtained after application of the TEX86, TEX86L, and TEX86H proxies. The phytol-based ratios were likely affected by the sedimentary production of pristane. Our results demonstrate the selective impact of aerobic organic matter degradation on the lipid and palynomorph composition of surface sediments along a short lateral oxygen gradient and suggest that some of the investigated proxies may be useful tracers of changing redox conditions at the sediment-water interface.
Resumo:
A total of five sediment cores from three sites, the Arctic Ocean, the Fram Strait and the Greenland Sea, yielded evidence for geomagnetic reversal excursions and associated strong lows in relative palaeointensity during oxygen isotope stages 2 and 3. A general similarity of the obtained relative palaeointensity curves to reference data can be observed. However, in the very detail, results from this high-resolution study differ from published records in a way that the prominent Laschamp excursion is clearly characterized by a significant field recovery when reaching the steepest negative inclinations, whereas only the N-R and R-N transitions are associated with the lowest values. Two subsequent excursions also reach nearly reversed inclinations but without any field recovery at that state. A total of 41 accelerator mass spectrometry (AMS) 14C ages appeared to allow a better age determination of these three directional excursions and related relative palaeointensity variations. However, although the three sites yielded more or less consistent chronological as well as palaeomagnetic results a comparison to another site, PS2644 in the Iceland Sea, revealed significant divergences in the ages of the geomagnetic field excursions of up to 4 ka even on basis of uncalibrated AMS 14C ages. This shift to older 14C ages cannot be explained by a time-transgressive character of the excursions, because the distance between the sites is small when compared with the size of and the distance to the geodynamo in the Earth's outer core. The most likely explanation is a difference of reservoir ages and/or mixing with old 14C-depleted CO2 from glacier ice expelled from Greenland at site PS2644.
Resumo:
Mineralogical interest in the nature of manganese oxide particulates in natural marine water (Suess, 1979), natural lake water (Klaveness, 1977), and simulated lake water (Giovanoli, 1980), prompted a search for such particulates in a large New South Wales coastal lake. The investigated waters did show the existence of manganese oxide replacement phenomena in fragmentary sedimentary rocks near the south margin of Lake Macquarie. The black crusts of manganese oxide discovered on rocks close to the waterline have revealed a three layers structure. Layer A (0-35 micron), adjacent to the rock, is composed essentially of kaolinite of weathering origin, together with low levels of manganese oxide without detectable Zn. Layer B (35-80 micron) follows as a manganese oxide layer containing admixed kaolinite and low amounts of Zn. Layer C (80-130 micron) is the closest to the surface and is made of Chalcophanite containing 10-15% of ZnO.
Resumo:
During Ocean Drilling Program Leg 191, ~100 m of mid-Cretaceous igneous crust was cored at Site 1179 (41.08°N, 159.96°E), located within magnetic Anomaly M8 on the abyssal plain of the northwest Pacific Ocean near Shatsky Rise. Paleomagnetic data from this section are significant because they can constrain the mid-Cretaceous Pacific plate paleolatitude and paleomagnetic pole, both of which can be used to infer tectonic drift and other geodynamic processes. In this study, we analyzed the paleomagnetism of 122 samples from 40 flows in the Site 1179 basalt section. Comparison of inclination data among flows implies 13 independent measurements of the paleomagnetic field. Assuming a reversed magnetic polarity because of the site location within Anomaly M8, the data give a mean paleocolatitude of 88.1° ± 6.8° (corresponding to a paleolatitude of 1.9°N). The paleocolatitude is consistent with other mid-Cretaceous Pacific paleomagnetic data that indicate ~39° northward drift of the western Pacific plate since mid-Cretaceous time. Comparison of observed between-flow colatitude variance with that expected from secular variation data suggests that secular variation may not have been completely averaged with the 13 independent groups sampled at Site 1179. Colatitude scatter in the section is markedly less in the deepest 33 m of the hole, indicating a shift from rapidly erupted flows in the bottom ~33 m of the section to more slowly emplaced flows above.
Resumo:
The Quaternary climate of southern Europe (south Italy and Greece) is investigated by pollen analysis of the sapropels which were deposited in the deep eastern Mediterranean Sea during the last 1 million year (Ma). The time-scale of core KC01b in the Ionian Sea has been established by tuning its oxygen isotopic record to the ice volume model of Imbrie and Imbrie (1980, doi:10.1126/science.207.4434.943). For the last 250,000 year (250 ka), the previous pollen studies and astronomical tuning have been confirmed. Sapropels were deposited under a large range of Mediterranean climates: fully interglacial, fully glacial, and intermediary, as revealed mainly by the balance between the respective pollen abundances of oak (Quercus) and sage-brush (Artemisia). The high value of the oak reveals the warm and wet climate of an Interglacial, and the high value of the sage-brush, the dry and cold climate of a Glacial. Whereas the Mediterranean climate is directly related to the variation of the high-latitude ice sheets, the deposition of sapropels is not so. In contrast with the wide climatic range, sapropels were deposited only when summer insolation in the low latitudes reached its highest peaks. However, between 250 ka and 1 Ma, that stable pattern is not yet established. Only six sapropels are observed, many expected ones do not appear, even as ghosts signalled by peaks of barium abundance, that remain after the post-deposition oxidation of organic matter. The pattern of sapropel formation in stable and direct relationship to highest insolation does not seem to apply. For five of those sapropels, neither climate extremes are observed; they mainly formed during intermediary types of Mediterranean climate. In contrast, one sapropel (and one ghost) relates to a relatively low peak of insolation, and its climate is of a unique, composite type not seen later. This might suggest an unsuspected, more complex pattern linking the formation of Mediterranean sapropels to the astronomical configuration.
Resumo:
The early Eocene represents a time of major changes in the global carbon cycle and fluctuations in global temperatures on both short- and long-time scales. These perturbations of the ocean-atmosphere system have been linked to orbital forcing and changes in net organic carbon burial, but accurate age models are required to disentangle the various forcing mechanisms and assess causal relationships. Discrepancies between the employed astrochronological and radioisotopic dating techniques prevent the construction of a robust time frame between ~49 and ~54 Ma. Here we present an astronomically tuned age model for this critical time period based on a new high-resolution benthic d13C record of ODP Site 1263, SE Atlantic. First, we assess three possible tuning options to the stable long-eccentricity cycle (405-kyr), starting from Eocene Thermal Maximum 2 (ETM2, ~54 Ma). Next we compare our record to the existing bulk carbonate d13C record from the equatorial Atlantic (Demerara Rise, ODP Site 1258) to evaluate our three initial age models and compare them with alternative age models previously established for this site. Finally, we refine our preferred age model by expanding our tuning to the 100-kyr eccentricity cycle of the La2010d solution. This solution appears to accurately reflect the long- and short-term eccentricity-related patterns in our benthic d13C record of ODP Site 1263 back to at least 52 Ma and possibly to 54 Ma. Our time scale not only aims to provide a new detailed age model for this period, but it may also serve to enhance our understanding of the response of the climate system to orbital forcing during this super greenhouse period as well as trends in its background state.