903 resultados para 240402 Quantum Optics and Lasers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct, point-by-point writing of fibre Bragg gratings in standard telecommunication fibre by femtosecond laser irradiation is demonstrated for the first time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have observed a positive change or refractive index and formation of waveguides in YAG:Cr4+ crystals, exposed to a high-intensity femtosecond laser beam. The technique is potentially suitable for fabrication of waveguide lasers in crystal materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A potential low cost novel sensing scheme for monitoring absolute strain is demonstrated. The scheme utilizes a synthetic heterodyne interrogation technique working in conjunction with a linearly chirped, sinusoidally tapered, apodized Bragg grating sensor. The interrogation technique is relatively simple to implement in terms of the required optics and the peripheral electronics. This scheme generates an output signal that has a quasi-linear response to absolute strain with a static strain resolution of ~±20 με and an operating range of ~1000 με.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scheme of teleportation of an arbitrary two-particle state is presented when two pairs of entangled particles are used as quantum channels. After the Bell state measurements are operated by the sender, the original state with deterministic probability can be reconstructed by the receiver when a corresponding unitary transformation is followed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode-locked lasers emitting a train of femtosecond pulses called dissipative solitons are an enabling technology for metrology, high-resolution spectroscopy, fibre optic communications, nano-optics and many other fields of science and applications. Recently, the vector nature of dissipative solitons has been exploited to demonstrate mode locked lasing with both locked and rapidly evolving states of polarisation. Here, for an erbium-doped fibre laser mode locked with carbon nanotubes, we demonstrate the first experimental and theoretical evidence of a new class of slowly evolving vector solitons characterized by a double-scroll chaotic polarisation attractor substantially different from Lorenz, Rössler and Ikeda strange attractors. The underlying physics comprises a long time scale coherent coupling of two polarisation modes. The observed phenomena, apart from the fundamental interest, provide a base for advances in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetisation in data storage devices and many other areas. © 2014 CIOMP. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper will review the current understanding of the so called nonlinear Shannon limit, and will speculate on methods to approach the limit through new system configurations, and increase the limit using new optical fibres. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a free space quantum cryptography system which is designed to allow continuous unattended key exchanges for periods of several days, and over ranges of a few kilometres. The system uses a four-laser faint-pulse transmission system running at a pulse rate of 10MHz to generate the required four alternative polarization states. The receiver module similarly automatically selects a measurement basis and performs polarization measurements with four avalanche photodiodes. The controlling software can implement the full key exchange including sifting, error correction, and privacy amplification required to generate a secure key.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental observation of autosoliton propagation in a nonlinear switch-guided, dispersion-managed system operating at 80Gbit/s is reported for the first time. The system is based on a strong dispersion map and supports autosoliton propagation over 3,000km.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we propose a NLSE-based model of power and spectral properties of the random distributed feedback (DFB) fiber laser. The model is based on coupled set of non-linear Schrödinger equations for pump and Stokes waves with the distributed feedback due to Rayleigh scattering. The model considers random backscattering via its average strength, i.e. we assume that the feedback is incoherent. In addition, this allows us to speed up simulations sufficiently (up to several orders of magnitude). We found that the model of the incoherent feedback predicts the smooth and narrow (comparing with the gain spectral profile) generation spectrum in the random DFB fiber laser. The model allows one to optimize the random laser generation spectrum width varying the dispersion and nonlinearity values: we found, that the high dispersion and low nonlinearity results in narrower spectrum that could be interpreted as four-wave mixing between different spectral components in the quasi-mode-less spectrum of the random laser under study could play an important role in the spectrum formation. Note that the physical mechanism of the random DFB fiber laser formation and broadening is not identified yet. We investigate temporal and statistical properties of the random DFB fiber laser dynamics. Interestingly, we found that the intensity statistics is not Gaussian. The intensity auto-correlation function also reveals that correlations do exist. The possibility to optimize the system parameters to enhance the observed intrinsic spectral correlations to further potentially achieved pulsed (mode-locked) operation of the mode-less random distributed feedback fiber laser is discussed.

Relevância:

100.00% 100.00%

Publicador: