963 resultados para 240300 Atomic and Molecular Physics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Ph.D. thesis describes the synthesis, characterization and study of calix[6]arene derivatives as pivotal components for the construction of molecular machine prototypes. Initially, the ability of a calix[6]arene wheel to supramolecularly assist and increase the rate of a nucleophilic substitution reaction was exploited for the synthesis of two constitutionally isomeric oriented rotaxanes. Then, the synthesis and characterization of several hetero-functionalised calix[6]arene derivatives and the possibility to obtain molecular muscle prototypes was reported. The ability of calix[6]arenes to form oriented pseudorotaxane towards dialkyl viologen axles was then exploited for the synthesis of two calixarene-based [2]catenanes. As last part of this thesis, studies on the electrochemical response of the threading-dethreading process of calix[6]arene-based pseudorotaxanes and rotaxanes supported on glassy carbon electrodes are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cocrystallization of the molecule of interest could be a smart and dainty way to tune solubility properties of solid phases leaving the molecule chemically unchanged, hence it is widely investigated by companies and by solid state scientists. Despite of this extremely high interest towards cocrystallization no particular emphasis has been paid to using it as a means to stabilize liquid molecules. In this work we define a benchmark of relevant molecules for human health that have been combined with suitable partners according to crystal engineering methods in order to obtain cocrystals. Solubility properties in different solvents of cocrystals new solid phases have been tested and compared to the properties of the drugs. A further approach to deal with volatile compounds is molecular confinement inside molecular scaffold. Nowadays metal organic frameworks (MOFs) are studied in many fields ranging from catalysis to trapping or storage of gases, such as hydrogen, methane, CO2 thanks to their extremely high porosity. Our goal is to confine liquid guests of biological relevance inside MOF pores, monitoring via X-ray diffraction, spectroscopy and thermal analysis the stabilization of the molecule of interest inside the cavities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) produced in huge quantities in the manufacture of polycarbonate plastics and epoxy resins. It is present in most humans in developed countries, acting as a xenoestrogen and it is considered an environmental risk factor associated to several diseases. Among the whole array of identified mechanisms by which BPA can interfere with physiological processes in living organisms, changes on ion channel activity is one of the most poorly understood. There is still little evidence about BPA regulation of ion channel expression and function. However, this information is key to understand how BPA disrupts excitable and non-excitable cells, including neurons, endocrine cells and muscle cells. This report is the result of a comprehensive literature review on the effects of BPA on ion channels. We conclude that there is evidence to say that these important molecules may be key end-points for EDCs acting as xenoestrogens. However, more research on channel-mediated BPA effects is needed. Particularly, mechanistic studies to unravel the pathophysiological actions of BPA on ion channels at environmentally relevant doses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To solve problems in polymer fluid dynamics, one needs the equation of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (1) one can write a continuum expression for the stress tensor in terms of kinematic tensors, or (2) one can select a molecular model that represents the polymer molecule, and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. In this review, we restrict the discussion primarily to the simplest stress tensor expressions or “constitutive equations” containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. The virtue of studying the simplest models is that we can discover some general notions as to which types of empiricisms or which types of molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows. These are the flows that are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to improve the current understanding of the adaptive response to exercise in humans, this dissertation performed a series of studies designed to examine the impact of training intensity and mode on aerobic capacity and performance, fibre-type specific adaptations to training, and individual patterns of response across molecular, morphological and genetic factors. Project #1 determined that training intensity, session dose, baseline VO2max and total training volume do not influence the magnitude of change in VO2max by performing a meta-regression, and meta-analysis of 28 different studies. The intensity of training had no effect on the magnitude of increase in maximal oxygen uptake in young healthy participants, but similar adaptations were achieved with lower training doses following high intensity training. Project # 2 determined the acute molecular response, and training-induced adaptations in aerobic performance, aerobic capacity and muscle phenotype following high-intensity interval training (HIT) or endurance exercise (END). The acute molecular response (fibre recruitment and signal activation) and training-induced adaptations in aerobic capacity, aerobic performance, and muscle phenotype were similar following HIT and END. Project # 3 examined the impact of baseline muscle morphology and molecular characteristics on the training response, and if muscle adaptations are coordinated. The muscle phenotype of individuals who experience the largest improvements (high responders) were lower before training for some muscle characteristics and molecular adaptations were coordinated within individual participants. Project # 4 examined the impact of 2 different intensities of HIT on the expression of nuclear and mitochondrial encoded genes targeted by PGC-1α. A systematic upregulation of nuclear and mitochondrial encoded genes was not present in the early recovery period following acute HIT, but the expression of mitochondrial genes were coordinated at an individual level. Collectively, results from the current dissertation contribute to our understanding of the molecular mechanisms influencing skeletal muscle and whole-body adaptive responses to acute exercise and training in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chick chorioallantoic membrane (CAM) is a widely used model for the study of angiogenesis, tumour growth, as well as drug efficacy. In spite of this, little is known about the developmental alteration from its appearance to the time of hatching. In the current study the CAM has been studied by classical stereology and allometry. Expression levels of selected angiogenesis-related molecules were estimated by RT-PCR and cell dynamics assessed by proliferation and apoptosis assays. Absolute CAM volume increased from a low of 0.47 ± 0.11 cm3 at embryonic day 8 (E8) to a high of 2.05 ± 0.27 cm3 at E18, and then decreased to 1.6 ± 0.47 cm3 at E20. On allometric analysis, three growth phases were identifiable. Between E8-13 (phase I), the CAM grew fastest; moderately in phase II (E13-18) but was regressing in phase III (E18-20). The chorion, the mesenchyme and the allantoic layers grew fastest in phase I, but moderately in phase II. The mesenchyme grew slowly in phase III while the chorion and allantois were regressing. Chorionic cell volume increased fastest in phase I and was regressing in phase III. Chorionic capillaries grew steadily in phase I and II but regressed in phase III. Both the chorion and the allantois grew by intrinsic cell proliferation as well as recruitment of cells from the mesenchyme. Cell proliferation was prominent in the allantois and chorion early during development, declined after E17 and apoptosis started mainly in the chorion from E14. VEGFR2 expression peaked at E11 and declined steadily towards E20, VEGF peaked at E13 and E20 while HIF 1α had a peak at E11 and E20. Studies targeting CAM growth and angiogenesis need to take these growth phases into consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclotron laboratory for radioisotope production and multi-disciplinary research at the Bern University Hospital (Inselspital) is based on an 18-MeV proton accelerator, equipped with a specifically conceived 6-m long external beam line, ending in a separate bunker. This facility allows performing daily positron emission tomography (PET) radioisotope production and research activities running in parallel. Some of the latest developments on accelerator and detector physics are reported. They encompass novel detectors for beam monitoring and studies of low current beams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apicomplexan parasites of the genera Theileria and Plasmodium have complicated life cycles including infection of a vertebrate intermediate host and an arthropod definitive host. As the Plasmodium parasite progresses through its life cycle, it enters a number of different cell types, both in its mammalian and mosquito hosts. The fate of these cells varies greatly, as do the parasite and host molecules involved in parasite-host interactions. In mammals, Plasmodium parasites infect hepatocytes and erythrocytes whereas Theileria infects ruminant leukocytes and erythrocytes. Survival of Plasmodium-infected hepatocytes and Theileria-infected leukocytes depends on parasite-mediated inhibition of host cell apoptosis but only Theileria-infected cells exhibit a fully transformed phenotype. As the development of both parasites progresses towards the merozoite stage, the parasites no longer promote the survival of the host cell and the infected cell is finally destroyed to release merozoites. In this review we describe similarities and differences of parasite-host cell interactions in Plasmodium-infected hepatocytes and Theileria-infected leukocytes and compare the observed phenotypes to other parasite stages interacting with host cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remineralization of organic matter in reactive marine sediments releases nutrients and dissolved organic matter (DOM) into the ocean. Here we focused on the molecular-level characterization of DOM by high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in sediment pore waters and bottom waters from contrasting redox regimes in the northern Black Sea with particular emphasis on nitrogen-bearing compounds to derive an improved understanding of the molecular transformations involved in nitrogen release. The number of nitrogen-bearing molecules is generally higher in pore waters than in bottom waters. This suggests intensified degradation of nitrogen-bearing precursor molecules such as proteins in anoxic sediments: No significant difference was observed between sediments deposited under oxic vs anoxic conditions (average O/C ratios of 0.55) suggesting that the different organic matter quality induced by contrasting redox conditions does not impact protein diagenesis in the subseafloor. Compounds in the pore waters were on average larger, less oxygenated, and had a higher number of unsaturations. Applying a mathematical model, we could show that the assemblages of nitrogen-bearing molecular formulas are potential products of proteinaceous material that was transformed by the following reactions: (a) hydrolysis and deamination, both reducing the molecular size and nitrogen content of the products and intermediates; (b) oxidation and hydration of the intermediates; and (c) methylation and dehydration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Category 3: Atomic and molecular properties."