996 resultados para 2004-10-BS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The future of the software industry is today being shaped in the courtroom. Most discussions of intellectual property to date, however, have been frames as debates about how the existing law --- promulgated long before the computer revolution --- should be applied to software. This memo is a transcript of a panel discussion on what forms of legal protection should apply to software to best serve both the industry and society in general. After addressing that question we can consider what laws would bring this about.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Similarity measurements between 3D objects and 2D images are useful for the tasks of object recognition and classification. We distinguish between two types of similarity metrics: metrics computed in image-space (image metrics) and metrics computed in transformation-space (transformation metrics). Existing methods typically use image and the nearest view of the object. Example for such a measure is the Euclidean distance between feature points in the image and corresponding points in the nearest view. (Computing this measure is equivalent to solving the exterior orientation calibration problem.) In this paper we introduce a different type of metrics: transformation metrics. These metrics penalize for the deformatoins applied to the object to produce the observed image. We present a transformation metric that optimally penalizes for "affine deformations" under weak-perspective. A closed-form solution, together with the nearest view according to this metric, are derived. The metric is shown to be equivalent to the Euclidean image metric, in the sense that they bound each other from both above and below. For Euclidean image metric we offier a sub-optimal closed-form solution and an iterative scheme to compute the exact solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the first part of this paper we show that a new technique exploiting 1D correlation of 2D or even 1D patches between successive frames may be sufficient to compute a satisfactory estimation of the optical flow field. The algorithm is well-suited to VLSI implementations. The sparse measurements provided by the technique can be used to compute qualitative properties of the flow for a number of different visual tsks. In particular, the second part of the paper shows how to combine our 1D correlation technique with a scheme for detecting expansion or rotation ([5]) in a simple algorithm which also suggests interesting biological implications. The algorithm provides a rough estimate of time-to-crash. It was tested on real image sequences. We show its performance and compare the results to previous approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method for localization and positioning in an indoor environment is presented. The method is based on representing the scene as a set of 2D views and predicting the appearances of novel views by linear combinations of the model views. The method is accurate under weak perspective projection. Analysis of this projection as well as experimental results demonstrate that in many cases it is sufficient to accurately describe the scene. When weak perspective approximation is invalid, an iterative solution to account for the perspective distortions can be employed. A simple algorithm for repositioning, the task of returning to a previously visited position defined by a single view, is derived from this method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Model-based object recognition commonly involves using a minimal set of matched model and image points to compute the pose of the model in image coordinates. Furthermore, recognition systems often rely on the "weak-perspective" imaging model in place of the perspective imaging model. This paper discusses computing the pose of a model from three corresponding points under weak-perspective projection. A new solution to the problem is proposed which, like previous solutins, involves solving a biquadratic equation. Here the biquadratic is motivate geometrically and its solutions, comprised of an actual and a false solution, are interpreted graphically. The final equations take a new form, which lead to a simple expression for the image position of any unmatched model point.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A typical robot vision scenario might involve a vehicle moving with an unknown 3D motion (translation and rotation) while taking intensity images of an arbitrary environment. This paper describes the theory and implementation issues of tracking any desired point in the environment. This method is performed completely in software without any need to mechanically move the camera relative to the vehicle. This tracking technique is simple an inexpensive. Furthermore, it does not use either optical flow or feature correspondence. Instead, the spatio-temporal gradients of the input intensity images are used directly. The experimental results presented support the idea of tracking in software. The final result is a sequence of tracked images where the desired point is kept stationary in the images independent of the nature of the relative motion. Finally, the quality of these tracked images are examined using spatio-temporal gradient maps.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present some extensions to the k-means algorithm for vector quantization that permit its efficient use in image segmentation and pattern classification tasks. It is shown that by introducing state variables that correspond to certain statistics of the dynamic behavior of the algorithm, it is possible to find the representative centers fo the lower dimensional maniforlds that define the boundaries between classes, for clouds of multi-dimensional, mult-class data; this permits one, for example, to find class boundaries directly from sparse data (e.g., in image segmentation tasks) or to efficiently place centers for pattern classification (e.g., with local Gaussian classifiers). The same state variables can be used to define algorithms for determining adaptively the optimal number of centers for clouds of data with space-varying density. Some examples of the applicatin of these extensions are also given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A scheme for recognizing 3D objects from single 2D images is introduced. The scheme proceeds in two stages. In the first stage, the categorization stage, the image is compared to prototype objects. For each prototype, the view that most resembles the image is recovered, and, if the view is found to be similar to the image, the class identity of the object is determined. In the second stage, the identification stage, the observed object is compared to the individual models of its class, where classes are expected to contain objects with relatively similar shapes. For each model, a view that matches the image is sought. If such a view is found, the object's specific identity is determined. The advantage of categorizing the object before it is identified is twofold. First, the image is compared to a smaller number of models, since only models that belong to the object's class need to be considered. Second, the cost of comparing the image to each model in a classis very low, because correspondence is computed once for the whoel class. More specifically, the correspondence and object pose computed in the categorization stage to align the prototype with the image are reused in the identification stage to align the individual models with the image. As a result, identification is reduced to a series fo simple template comparisons. The paper concludes with an algorithm for constructing optimal prototypes for classes of objects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interpretation and recognition of noisy contours, such as silhouettes, have proven to be difficult. One obstacle to the solution of these problems has been the lack of a robust representation for contours. The contour is represented by a set of pairwise tangent circular arcs. The advantage of such an approach is that mathematical properties such as orientation and curvature are explicityly represented. We introduce a smoothing criterion for the contour tht optimizes the tradeoff between the complexity of the contour and proximity of the data points. The complexity measure is the number of extrema of curvature present in the contour. The smoothing criterion leads us to a true scale-space for contours. We describe the computation of the contour representation as well as the computation of relevant properties of the contour. We consider the potential application of the representation, the smoothing paradigm, and the scale-space to contour interpretation and recognition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe an approach to parallel compilation that seeks to harness the vast amount of fine-grain parallelism that is exposed through partial evaluation of numerically-intensive scientific programs. We have constructed a compiler for the Supercomputer Toolkit parallel processor that uses partial evaluation to break down data abstractions and program structure, producing huge basic blocks that contain large amounts of fine-grain parallelism. We show that this fine-grain prarllelism can be effectively utilized even on coarse-grain parallel architectures by selectively grouping operations together so as to adjust the parallelism grain-size to match the inter-processor communication capabilities of the target architecture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A key question regarding primate visual motion perception is whether the motion of 2D patterns is recovered by tracking distinctive localizable features [Lorenceau and Gorea, 1989; Rubin and Hochstein, 1992] or by integrating ambiguous local motion estimates [Adelson and Movshon, 1982; Wilson and Kim, 1992]. For a two-grating plaid pattern, this translates to either tracking the grating intersections or to appropriately combining the motion estimates for each grating. Since both component and feature information are simultaneously available in any plaid pattern made of contrast defined gratings, it is unclear how to determine which of the two schemes is actually used to recover the plaid"s motion. To address this problem, we have designed a plaid pattern made with subjective, rather than contrast defined, gratings. The distinguishing characteristic of such a plaid pattern is that it contains no contrast defined intersections that may be tracked. We find that notwithstanding the absence of such features, observers can accurately recover the pattern velocity. Additionally we show that the hypothesis of tracking "illusory features" to estimate pattern motion does not stand up to experimental test. These results present direct evidence in support of the idea that calls for the integration of component motions over the one that mandates tracking localized features to recover 2D pattern motion. The localized features, we suggest, are used primarily as providers of grouping information - which component motion signals to integrate and which not to.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a recent seminal paper, Gibson and Wexler (1993) take important steps to formalizing the notion of language learning in a (finite) space whose grammars are characterized by a finite number of parameters. They introduce the Triggering Learning Algorithm (TLA) and show that even in finite space convergence may be a problem due to local maxima. In this paper we explicitly formalize learning in finite parameter space as a Markov structure whose states are parameter settings. We show that this captures the dynamics of TLA completely and allows us to explicitly compute the rates of convergence for TLA and other variants of TLA e.g. random walk. Also included in the paper are a corrected version of GW's central convergence proof, a list of "problem states" in addition to local maxima, and batch and PAC-style learning bounds for the model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the general case, a trilinear relationship between three perspective views is shown to exist. The trilinearity result is shown to be of much practical use in visual recognition by alignment --- yielding a direct method that cuts through the computations of camera transformation, scene structure and epipolar geometry. The proof of the central result may be of further interest as it demonstrates certain regularities across homographies of the plane and introduces new view invariants. Experiments on simulated and real image data were conducted, including a comparative analysis with epipolar intersection and the linear combination methods, with results indicating a greater degree of robustness in practice and a higher level of performance in re-projection tasks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Expectation-Maximization (EM) algorithm is an iterative approach to maximum likelihood parameter estimation. Jordan and Jacobs (1993) recently proposed an EM algorithm for the mixture of experts architecture of Jacobs, Jordan, Nowlan and Hinton (1991) and the hierarchical mixture of experts architecture of Jordan and Jacobs (1992). They showed empirically that the EM algorithm for these architectures yields significantly faster convergence than gradient ascent. In the current paper we provide a theoretical analysis of this algorithm. We show that the algorithm can be regarded as a variable metric algorithm with its searching direction having a positive projection on the gradient of the log likelihood. We also analyze the convergence of the algorithm and provide an explicit expression for the convergence rate. In addition, we describe an acceleration technique that yields a significant speedup in simulation experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While researchers in computer vision and pattern recognition have worked on automatic techniques for recognizing faces for the last 20 years, most systems specialize on frontal views of the face. We present a face recognizer that works under varying pose, the difficult part of which is to handle face rotations in depth. Building on successful template-based systems, our basic approach is to represent faces with templates from multiple model views that cover different poses from the viewing sphere. Our system has achieved a recognition rate of 98% on a data base of 62 people containing 10 testing and 15 modelling views per person.