981 resultados para 113-694
Resumo:
Mineralogical and granulometric properties of glacial-marine surface sediments of the Weddell Sea and adjoining areas were studied in order to decipher spatial variations of provenance and transport paths of terrigenous detritus from Antarctic sources. The silt fraction shows marked spatial differences in quartz contents. In the sand fractions heavy-mineral assemblages display low mineralogical maturity and are dominated by garnet, green hornblende, and various types of clinopyroxene. Cluster analysis yields distinct heavy-mineral assemblages, which can be attributed to specific source rocks of the Antarctic hinterland. The configuration of modern mineralogical provinces in the near-shore regions reflects the geological variety of the adjacent hinterland. In the distal parts of the study area, sand-sized heavy minerals are good tracers of ice-rafting. Granulometric characteristics and the distribution of heavy-mineral provinces reflect maxima of relative and absolute accumulation of ice-rafted detritus in accordance with major iceberg drift tracks in the course of the Weddell Gyre. Fine-grained and coarse-grained sediment fractions may have different origins. In the central Weddell Sea, coarse ice-rafted detritus basically derives from East Antarctic sources, while the fine-fraction is discharged from weak permanent bottom currents and/or episodic turbidity currents and shows affinities to southern Weddell Sea sources. Winnowing of quartz-rich sediments through intense bottom water formation in the southern Weddell Sea provides muddy suspensions enriched in quartz. The influence of quartz-rich suspensions moving within the Weddell Gyre contour current can be traced as far as the continental slope in the northwestern Weddell Sea. In general, the focusing of mud by currents significantly exceeds the relative and absolute contribution of ice-rafted detritus beyond the shelves of the study area.
Resumo:
High-resolution study of Antarctic planktonic foraminiferal assemblages (Ocean Drilling Program Site 690, Weddell Sea) shows that these microplankton underwent a stepwise series of changes during the Paleocene-Eocene thermal maximum (PETM). Initiation of this response coincides with the onset of the carbon isotope excursion (CIE) but precedes the benthic foraminiferal mass extinction. The "top-to-bottom" succession in the biotic response indicates that the surface ocean/atmosphere was affected before the deep sea. The earliest stage of the faunal response entailed a conspicuous turnover within the shallow-dwelling genus Acarinina and a succession of stratigraphic first appearances. The genus Morozovella, large (>180 µm) biserial planktonics, and A. wilcoxensis are all restricted to the lower CIE within this PETM section. Acarininid populations crashed as the ocean/climate system ameliorated during the CIE recovery, reflecting atypical surface water conditions. This transient decline in acarininids is paralleled by a marked increase in carbonate content of sediments. It is postulated that this interval of carbonate enrichment, and its unusual microfauna, reflects enhanced carbon storage within reservoirs of the global carbon cycle other than the marine carbonate system (sensu Broecker et al., 1993, doi:10.1029/93PA00423; Ravizza et al., 2001, doi:10.1029/2000PA000541).