993 resultados para nitrite, in surface water


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Cruise 46 of R/V Akademik Mstislav Keldysh (from June to September 2001), vertical distributions of Radiolaria (Acantharia - Bac and Euradiolaria - Beur), mesozooplankton (from 0.2 to 3.0 mm size, Bm), and chlorophyll a (Cchl) in the epipelagic zone of the North Atlantic were studied. To examine the above-listed characteristics, samples were taken by Niskin 30 l bottles from 12-16 depth levels within the upper 100 to 200 m layer in the subarctic (48°11'N, 16°06'W) and subtropical (27°31'N, 75°51'W) waters, as well as in the transitional zone (41°44'N, 49°57'W). The latter proved to be characterized by the highest values of all averaged parameters examined by us within the upper 100 m layer (Bm - 365mg/m**3, Bac - 140 mg/m**3, Beur - 0.37 mg/m**3, and Cchl - 0.32 mg/m**3). For subarctic and subtropical waters corresponding characteristics were as follows: Bm - 123 and 53 mg/m**3, Bac - 0 and 0.06 mg/m**3, Beur - 0.17 and 0.19 mg/m**3, and Cchl - 0.27 and 0.05 mg/m**3, respectively. Percentage of Acantharia in total biomass of Radiolaria and zooplankton ranged from 0 to 39%, whereas that of Euradiolaria varied from 0.01 to 0.36%. Depth levels with maximum abundance of Acantharia were located above maxima of zooplankton and chlorophyll a or coincided with them. As for Euradiolaria, vertical profiles of their biomass were more diverse as compared with Acantharia. The latter group preferred more illuminated depth levels for its maximum development (10-100% of surface irradiance, E0) with respect to Euradiolaria (1-60% of E0). Possible reasons for this difference are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite intensive research on the different domains of the marine phosphorus (P) cycle during the last decades, frequently discussed open questions still exist especially on controlling factors for the benthic behaviour of P and its general distribution in sediment-pore water systems. Steady state or the internal balance of all relevant physical and (bio)geochemical processes are amongst the key issues. In this study we present and discuss an extended data set from surface sediments recovered from three locations on the NW African continental slope. Pore water data and results from sequential sediment extractions give clear evidence to the well-known close relationship between the benthic cycles of P and iron. Accordingly, most of the dissolved phosphate must have been released by microbially catalyzed reductive dissolution of iron (oxhydr)oxides. However, rates of release and association of P and iron, respectively, are not directly represented in profiles of element specific sediment compositions. Results from steady-state based transport-reaction modelling suggest that particle mixing due to active bioturbation, or rather a physical net downward transport of P associated to iron (oxyhydr)oxides, is an essential process for the balance of the inspected benthic cycles. This study emphasizes the importance of balancing analytical data for a comprehensive understanding of all processes involved in biogeochemical cycles.