911 resultados para ~1H-NMR
Resumo:
Gels of various composition containing SiO2, Al2O3, and P2O5 have been investigated by employing high resolution magic-angle-spinning (MAS) 27Al, 29Si, and 31P NMR spectroscopy. Changes occurring in the NMR spectra as the gels are progressively heated have been examined to understand the nature of structural changes occurring during the crystallization of the gels. 27Al resonance is sensitive to changes in the coordination number even when the Al concentration is as low as 1 mol%. As the percentage of Al increases, the hydroxyl groups tend to be located on the Al sites while Si remains as SiO4/2 (Q4). Mullite is the major phase formed at higher temperature in the aluminosilicate gels. In the case of the silicophosphate gels, Si is present in the form of Q4 and Q3 species. There is a change in the coordination of Si from four to six as the gel is heated. The formation of six-coordinated Si is facilitated even at lower temperatures (~673 K) when the P2O5 content is high. The phosphorus atoms present as orthophosphoric acid units in the xerogels change over to metaphosphate-like units as the gel is heated to higher temperatures. In aluminosilicophosphates, Si is present as Q4 and Q3 species while P is present as metaphosphate units; Al in these gels seems to be inducted into the tetrahedral network positions.
Resumo:
Three-dimensional (3D) structure determination of proteins is benefitted by long-range distance constraints comprising the methyl groups, which constitute the hydrophobic core of proteins. However, in methyl groups (of Ala, Ile, Leu, Met, Thr and Val) there is a significant overlap of C-13 and H-1 chemical shifts. Such overlap can be resolved using the recently proposed (3,2)D HCCH-COSY, a G-matrix Fourier transform (GFT) NMR based experiment, which facilitates editing of methyl groups into distinct spectral regions by combining their C-13 chemical shifts with that of the neighboring, directly attached, C-13 nucleus. Using this principle, we present three GFT experiments: (a) (4,3)D NOESY-HCCH, (b) (4,3)D H-1-TOCSY-HCCH and (c) (4,3)D C-13-TOCSY-HCCH. These experiments provide unique 4D spectral information rapidly with high sensitivity and resolution for side-chain resonance assignments and NOE analysis of methyl groups. This is exemplified by (4,3)D NOESY-HCCH data acquired for 17.9 kDa non-deuterated cytosolic human J-protein co-chaperone, which provided crucial long-range distance constraints for its 3D structure determination.
Resumo:
Four isomeric dialdehydes 4, readily available from cycloaddition of propiolic aldehyde (2) to 1,2,4,5-hexatetraene (1), were separated by chromatography and recrystallization, and were characterized by their spectroscopic data. The individual isomers can now be easily identified from their H-1 NMR spectra even if only one of them is present.
Resumo:
Two series of flame retardant polymers, viz. polyarylazo phosphate and phosphoramide esters, were synthesized by solution polycondensation of 4,4′-dihydroxyazobenzene with various aryl phosphorodichlorides and aryl phosphoramidic dichlorides. They were characterized by i.r. 1H-, 13C- and 31P-NMR spectroscopy. The molar mass, thermal and flammability studies were carried out by viscometry, thermogravimetry and limiting oxygen index respectively to examine the influence of the phosphate and phosphoramide linkages. The polyphosphoramide esters possess better thermal and flammability characteristics than the polyphosphate esters.
Resumo:
The long-range deuterium isotope effects on13C nuclear shielding are physically not yet completely understood. Two existing models for explaining these effects, vibrational and substituent, are compared here. The vibrational model is based on the Born-Oppenheimer approximation, but it can explain only one-bond deuterium effects. To the contrary, the substituent model may explain many long-range isotope effects, but it is controversial due to the assumption of some distinct electronic properties of isotopes. We explain how long-range deuterium isotope effects may be rationalized by the subtle electronic changes induced by isotope substitution, which does not violate the Born-Oppenheimer approximation.
Resumo:
It is well known that in the time-domain acquisition of NMR data, signal-to-noise (S/N) improves as the square root of the number of transients accumulated. However, the amplitude of the measured signal varies during the time of detection, having a functional form dependent on the coherence detected. Matching the time spent signal averaging to the expected amplitude of the signal observed should also improve the detected signal-to-noise. Following this reasoning, Barna et al. (J Magn. Reson.75, 384, 1987) demonstrated the utility of exponential sampling in one- and two-dimensional NMR, using maximum-entropy methods to analyze the data. It is proposed here that for two-dimensional experiments the exponential sampling be replaced by exponential averaging. The data thus collected can be analyzed by standard fast-Fourier-transform routines. We demonstrate the utility of exponential averaging in 2D NOESY spectra of the protein ubiquitin, in which an enhanced SIN is observed. It is also shown that the method acquires delayed double-quantum-filtered COSY without phase distortion.
Resumo:
29Si chemical shifts in a wide variety of silicates in crystalline, glassy and gel states have been related to a parameter, P, which takes into account the electronegativity and the structural description of the silicate units as well as the ionic potential of the modifier cation. The relation, δ(ppm)=28.4 [1−exp(−P)]−110.5, besides having predictive value, satisfactorily accounts for all the available chemical-shifts data on silicates and shows the right kind of limiting behaviour, with δ approaching the Q0 value at large P.
Resumo:
The aryloxy(alkoxy)cyclotriphosphazenes N3P3(OR)6�m(OC6H4Me-p)n(R = Me, n= 1�3; R = Et or CH2Ph, n= 3) rearrange on heating to give trioxocyclotriphosphazanes; the di- and mono-methoxy derivatives, N3P3(OMe)6�n(OC6H4Me-p)n(n= 4 or 5), yield dioxophosphaz-1-enes and an oxophosphazadiene respectively. The 1H, 13C and 31P NMR data for the starting materials and the products are presented. No evidence has been found for partially rearranged products. The geometrical disposition of the aryloxy groups in the starting material is retained in the rearranged products. Some aspects of the mechanism of the thermal rearrangement are discussed.
Resumo:
Polyphosphate esters containing ferrocene structures were synthesized from 1,1′-bis (p-hydroxyphenylamido) ferrocene and 1,1′-bis (p-hydroxyphenoxycarbonyl) ferrocene with aryl phosphorodichloridates by interfacial polycondensation using a phase transfer catalyst. The polymers were characterized by infrared, 1H-, 13C-, and 31-NMR spectroscopy. The molecular weights were determined by end group analysis using 31P-NMR spectral data. The thermal stability and fire retardancy were respectively determined by thermogravimetry and limiting oxygen index (LOI) measurements. The polyamide-phosphate esters showed better thermal stability and higher LOI values than the polyester-phosphate esters.
Resumo:
Restricted Access.. Proton NMR spectra of bicyclic diazines such as phthalazine and quinoxaline have been studied in lyotropic liquid crystalline solvents. Values of the indirect spin-spin couplings which could not be derived from studies in the isotropic medium have been obtained. Geometrical information has been obtained in both the cases. The results are indicative of significant solvcntsolute interactions in phthalazine but not in quinoxaline.
Resumo:
The simple two dimensional C-13-satellite J/D-resolved experiments have been proposed for the visualization of enantiomers, extraction of homo- and hetero-nuclear residual dipolar couplings and also H-1 chemical shift differences between the enantiomers in the anisotropic medium. The significant advantages of the techniques are in the determination of scalar couplings of bigger organic molecules. The scalar couplings specific to a second abundant spin such as F-19 can be selectively extracted from the severely overlapped spectrum. The methodologies are demonstrated on a chiral molecule aligned in the chiral liquid crystal medium and two different organic molecules in the isotropic solutions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We report a single C-13 spin edited selective proton-proton correlation experiment to decipher overcrowded 13C coupled proton NMR spectra of weakly dipolar coupled spin systems. The experiment unravels the masked C-13 satellites in proton spectrum and permits the measurement of one bond carbon-proton residual dipolar couplings in I3S and for each diastereotopic proton in I2S groups. It also provides all the possible homonuclear proton-proton residual couplings which are otherwise difficult to extract from the broad and featureless one dimensional H-1 spectrum, in addition to enantiodifferentiation in a chiral molecule. Employment of heteronuclear (C-13) decoupling in the evolution period results in complete demixing of overlapped signals from enantiomers. The observed anomalous intensity pattern in strongly dipolar coupled methyl protons in methyl selective correlation experiment has been interpreted using polarization operator formalism. (C) 2010 Elsevier Inc. All rights reserved.