992 resultados para yields
Resumo:
We present supergravity solutions for 1/8-supersymmetric black supertubes with three charges and three dipoles. Their reduction to five dimensions yields supersymmetric black rings with regular horizons and two independent angular momenta. The general solution contains seven independent parameters and provides the first example of nonuniqueness of supersymmetric black holes. In ten dimensions, the solutions can be realized as D1-D5-P black supertubes. We also present a worldvolume construction of a supertube that exhibits three dipoles explicitly. This description allows an arbitrary cross section but captures only one of the angular momenta.
Resumo:
Yerba mate (Ilex paraguariensis) is a tree species native to the subtropical regions of South America, and is found in Brazil predominantly in the southern region. Despite the historical importance in this region, so far, studies on crop nutrition to improve yields are scarce. Thus, this study evaluated the effect of potassium rates on K soil availability, and the yield and nutritional status of yerba mate. The experiment was conducted in São Mateus do Sul, State of Paraná, on a Humox soil, where K2O rates of 0, 20, 40, 80, 160, and 320 kg ha-1 were tested on 7-year-old plantations. The experiment was harvested 24 months after installation by removing approximately 95 % of the canopy that had sprouted from the previous harvest. The soil was evaluated for K availability in the layers 0-10, 0-20, 10-20, and 20-40 cm. The plant parts leaf fresh matter (LM), twigs (TW), thick branches (BR) and commercial yerba mate (COYM), i.e., LM+TW, were analyzed. In addition, the relationship between fresh matter/dry matter (FM/DM) and K concentration in LM, AG and BR were evaluated. The fertilization increased K availability in all evaluated soil layers, indicating good mobility of the nutrient even at low rates. Yerba mate responded positively to increasing K2O rates with higher yields of all harvested components. The crop proved K-demanding, with a maximum COYM yield of 28.5 t ha-1, when 72 mg dm-3 K was available in the 0-20 cm layer. Yerba mate in the plant production stage requires soil K availability at medium to high level; in clayey soil with low K availability, a rate of 300 kg ha-1 K2O should be applied at 24 month intervals to obtain high yields. A leaf K concentration of 16.0 g ha-1 is suitable for yerba mate in the growth stage.
Resumo:
Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol), as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2-) up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE) rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.
Resumo:
(2+1)-dimensional anti-de Sitter (AdS) gravity is quantized in the presence of an external scalar field. We find that the coupling between the scalar field and gravity is equivalently described by a perturbed conformal field theory at the boundary of AdS3. This allows us to perform a microscopic computation of the transition rates between black hole states due to absorption and induced emission of the scalar field. Detailed thermodynamic balance then yields Hawking radiation as spontaneous emission, and we find agreement with the semiclassical result, including greybody factors. This result also has application to four and five-dimensional black holes in supergravity.
Resumo:
Phytotoxicity and transfer of potentially toxic elements, such as cadmium (Cd) or barium (Ba), depend on the availability of these elements in soils and on the plant species exposed to them. With this study, we aimed to evaluate the effect of Cd and Ba application rates on yields of pea (Pisum sativum L.), sorghum (Sorghum bicolor L.), soybean (Glycine max L.), and maize (Zea mays L.) grown under greenhouse conditions in an Oxisol and an Entisol with contrasting physical and chemical properties, and to correlate the amount taken up by plants with extractants commonly used in routine soil analysis, along with transfer coefficients (Bioconcentration Factor and Transfer Factor) in different parts of the plants. Plants were harvested at flowering stage and measured for yield and Cd or Ba concentrations in leaves, stems, and roots. The amount of Cd accumulated in the plants was satisfactorily evaluated by both DTPA and Mehlich-3 (M-3). Mehlich-3 did not relate to Ba accumulated in plants, suggesting it should not be used to predict Ba availability. The transfer coefficients were specific to soils and plants and are therefore not recommended for direct use in risk assessment models without taking soil properties and group of plants into account.
Resumo:
Farmers must carefully choose the cultivar to be grown for a successful carrot crop. The yield potential of the cultivar may influence nutrient demand and should be known to plan for fertilization application. The aim of this study was to evaluate the cultivar effect on carrot yield and on the nutrient content and quantities allocated to leaves and roots. Three experiments were set up in two crop seasons in Rio Paranaíba, MG, Brazil. In the first season, typical summer, 10 summer cultivars were sown. In the second season, summer-winter (transition), two experiments were set up, one with summer cultivars and the other with winter cultivars. The treatments consisted of the carrot cultivars distributed in randomized blocks with four replications. Fresh and dry matter of the roots and leaves was quantified. Yield was calculated based on fresh matter of the roots. The nutrient content in leaves and roots was determined at the time of harvest. These contents and the dry matter production of roots and leaves were used to calculate nutrient uptake and export. The greatest average for total and commercial yield occurred in the crop under summer conditions. Extraction of N and K for most of the cultivars in the three experiments went beyond the amounts applied through fertilizers. Thus, there was contribution of nutrients from the soil to obtain the yields observed. However, the amount of P taken up was considerably less than that applied. This implies that soil P fertility will increase after cropping. The crop season and the cultivars influenced yield, nutrient content in the leaves and roots, and extraction and export of nutrients by the carrot crop.
Resumo:
We recently showed that a heavy quark moving su ciently fast through a quark-gluon plasma may lose energy by Cherenkov-radiating mesons [1]. Here we review our previous holographic calculation of the energy loss in N = 4 Super Yang-Mills and extend it to longitudinal vector mesons and scalar mesons. We also discuss phenomenological implications for heavy-ion collision experiments. Although the Cherenkov energy loss is an O(1=Nc) effect, a ballpark estimate yields a value of dE/dx for Nc = 3 which is comparable to that of other mechanisms.
Resumo:
ABSTRACT The large production of sewage sludge (SS), especially in large urban centers, has led to the suggestion of using this waste as fertilizer in agriculture. The economic viability of this action is great and contributes to improve the environment by cycling the nutrients present in this waste, including high contents of organic matter and plant nutrients. This study evaluated the chemical and biochemical properties of Dystrophic and EutroferricLatossolos Vermelhos (Oxisols) under corn and after SS application at different rates for 16 years. The field experiment was carried out in Jaboticabal, São Paulo State, Brazil, using a randomized block design with four treatments and five replications. Treatments consisted of control - T1 (mineral fertilization, without SS application), 5 Mg ha-1 SS - T2, 10 Mg ha-1 SS - T3, and 20 Mg ha-1 SS - T4 (dry weight base). The data were submitted to variance analysis and means were compared by the Duncan test at 5 %. Sewage sludge increased P extracted by resin in both theLatossolos Vermelhos, Dystrophic and Eutroferric, and the organic matter content in the Dystrophic Latossolo Vermelho. The waste at the rate 20 Mg ha-1 on a dry weight basis promoted increases in acid phosphatase activity in Eutroferric Latossolo Vermelho, basal respiration and metabolic quotient in DystrophicLatossolo Vermelho. The rate 20 Mg ha-1 sewage sludge on a dry weight basis did not alter the soil microbial biomass in both the Latossolos Vermelhos; in addition, it improved corn yields without inducing any symptoms of phytotoxicity or nutrient deficiency in the plants.
Resumo:
The ac electrical response is studied in thin films composed of well-defined nanometric Co particles embedded in an insulating ZrO2 matrix which tends to coat them, preventing the formation of aggregates. In the dielectric regime, ac transport originates from the competition between interparticle capacitive Cp and tunneling Rt channels, the latter being thermally assisted. This competition yields an absorption phenomenon at a characteristic frequency 1/(RtCp), which is observed in the range 1010 000 Hz. In this way, the effective ac properties mimic the universal response of disordered dielectric materials. Temperature and frequency determine the complexity and nature of the ac electrical paths, which have been successfully modeled by an Rt-Cp network.
Resumo:
ABSTRACT The literature on fertilization for carrot growing usually recommends nutrient application rates for yield expectations lower than the yields currently obtained. Moreover, the recommendation only considers the results of soil chemical analysis and does not include effects such as crop residues or variations in yield levels. The aim of this study was to propose a fertilizer recommendation system for carrot cultivation (FERTICALC Carrot) which includes consideration of the nutrient supply by crop residues, variation in intended yield, soil chemical properties, and the growing season (winter or summer). To obtain the data necessary for modeling nutritional requirements, 210 carrot production stands were sampled in the region of Alto Paranaíba, State of Minas Gerais, Brazil. The dry matter content of the roots, the coefficient of biological utilization of nutrients in the roots, and the nutrient harvest index for summer and winter crops were determined for these samples. To model the nutrient supply by the soil, the literature was surveyed in regard to this theme. A modeling system was developed for recommendation of macronutrients and B. For cationic micronutrients, the system only reports crop nutrient export and extraction. The FERTICALC which was developed proved to be efficient for fertilizer recommendation for carrot cultivation. Advantages in relation to official fertilizer recommendation tables are continuous variation of nutrient application rates in accordance with soil properties and in accordance with data regarding the extraction efficiency of modern, higher yielding cultivars.
Resumo:
ABSTRACT Trichoderma species are non-pathogenic microorganisms that protect against fungal diseases and contribute to increased crop yields. However, not all Trichoderma species have the same effects on crop or a pathogen, whereby the characterization and identification of strains at the species level is the first step in the use of a microorganism. The aim of this study was the identification – at species level – of five strains of Trichoderma isolated from soil samples obtained from garlic and onion fields located in Costa Rica, through the analysis of the ITS1, 5.8S, and ITS2 ribosomal RNA regions; as well as the determination of their individual antagonistic ability over S. cepivorum Berkeley. In order to distinguish the strains, the amplified products were analyzed using MEGA v6.0 software, calculating the genetic distances through the Tamura-Nei model and building the phylogenetic tree using the Maximum Likelihood method. We established that the evaluated strains belonged to the species T. harzianum and T. asperellum; however it was not possible to identify one of the analyzed strains based on the species criterion. To evaluate their antagonistic ability, the dual culture technique, Bell’s scale, and the percentage inhibition of radial growth (PIRG) were used, evidencing that one of the T. asperellum isolates presented the best yields under standard, solid fermentation conditions.
Resumo:
When massively expressed in bacteria, recombinant proteins often tend to misfold and accumulate as soluble and insoluble nonfunctional aggregates. A general strategy to improve the native folding of recombinant proteins is to increase the cellular concentration of viscous organic compounds, termed osmolytes, or of molecular chaperones that can prevent aggregation and can actively scavenge and convert aggregates into natively refoldable species. In this study, metal affinity purification (immobilized metal ion affinity chromatography [IMAC]), confirmed by resistance to trypsin digestion, was used to distinguish soluble aggregates from soluble nativelike proteins. Salt-induced accumulation of osmolytes during induced protein synthesis significantly improved IMAC yields of folding-recalcitrant proteins. Yet, the highest yields were obtained with cells coexpressing plasmid-encoded molecular chaperones DnaK-DnaJ-GrpE, ClpB, GroEL-GroES, and IbpA/B. Addition of the membrane fluidizer heat shock-inducer benzyl alcohol (BA) to the bacterial medium resulted in similar high yields as with plasmid-mediated chaperone coexpression. Our results suggest that simple BA-mediated induction of endogenous chaperones can substitute for the more demanding approach of chaperone coexpression. Combined strategies of osmolyte-induced native folding with heat-, BA-, or plasmid-induced chaperone coexpression can be thought to optimize yields of natively folded recombinant proteins in bacteria, for research and biotechnological purposes.
Resumo:
The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies.
Resumo:
A common way to model multiclass classification problems is by means of Error-Correcting Output Codes (ECOCs). Given a multiclass problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each subgroup of classes from each binary problem. However, we cannot guarantee that a linear classifier model convex regions. Furthermore, nonlinear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multiclass classification problems using subclass information in the ECOC framework. Complex problems are solved by splitting the original set of classes into subclasses and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceal the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size.
Resumo:
Con este trabajo revisamos los Modelos de niveles de las tasas de intereses en Chile. Además de los Modelos de Nivel tradicionales por Chan, Karoly, Longstaff y Lijadoras (1992) en EE. UU, y Parisi (1998) en Chile, por el método de Probabilidad Maximun permitimos que la volatilidad condicional también incluya los procesos inesperados de la información (el modelo GARCH ) y también que la volatilidad sea la función del nivel de la tasa de intereses (modelo TVP-NIVELE) como en Brenner, Harjes y la Crona (1996). Para esto usamos producciones de mercado de bonos de reconocimiento, en cambio las producciones mensuales medias de subasta PDBC, y la ampliación del tamaño y la frecuencia de la muestra a 4 producciones semanales con términos(condiciones) diferentes a la madurez: 1 año, 5 años, 10 años y 15 años. Los resultados principales del estudio pueden ser resumidos en esto: la volatilidad de los cambios inesperados de las tarifas depende positivamente del nivel de las tarifas, sobre todo en el modelo de TVP-NIVEL. Obtenemos pruebas de reversión tacañas, tal que los incrementos en las tasas de intereses no eran independientes, contrariamente a lo obtenido por Brenner. en EE. UU. Los modelos de NIVELES no son capaces de ajustar apropiadamente la volatilidad en comparación con un modelo GARCH (1,1), y finalmente, el modelo de TVP-NIVEL no vence los resultados del modelo GARCH (1,1)