917 resultados para work of Marilyn Strathern
Resumo:
Following the seminal work of Charney and Shukla (198 1), the tropical climate is recognised to be more predictable than extra tropical climate as it is largely forced by 'external' slowly varying forcing and less sensitive to initial conditions. However, the Indian summer monsoon is an exception within the tropics where 'internal' low frequency (LF) oscillations seem to make significant contribution to its interannual variability (IAV) and makes it sensitive to initial conditions. Quantitative estimate of contribution of 'internal' dynamics to IAV of Indian monsoon is made using long experiments with an atmospheric general circulation model (AGCM) and through analysis of long daily observations. Both AGCM experiments and observations indicate that more than 50% of IAV of the monsoon is contributed by 'internal' dynamics making the predictable signal (external component) burried in unpredictable noise (internal component) of comparable amplitude. Better understanding of the nature of the 'internal' LF variability is crucial for any improvement in predicition of seasonal mean monsoon. Nature of 'internal' LF variability of the monsoon and mechanism responsible for it are investigated and shown that vigorous monsoon intraseasonal oscillations (ISO's) with time scale between 10-70 days are primarily responsible for generating the 'internal' IAV. The monsoon ISO's do this through scale interactions with synoptic disturbances (1-7 day time scale) on one hand and the annual cycle on the other. The spatial structure of the monsoon ISO's is similar to that of the seasonal mean. It is shown that frequency of occurance of strong (weak) phases of the ISO is different in different seasons giving rise to stronger (weaker) than normal monsoon. Change in the large scale circulation during strong (weak) phases of the ISO make it favourable (inhibiting) for cyclogenesis and gives rise to space time clustering of synoptic activity. This process leads to enhanced (reduced) rainfall in seasons of higher frequency of occurence strong (weak) phases of monsoon ISO.
Resumo:
The paper presents a rational approach to model the behavior of bonded soils within the frame work of hardening plasticity. The approach is based on the premise that the resistance of bonded materials is a superposition of the two components of cement bond strength and soil frictional strength and that the deformation of the soil is associated with the frictional component of stresses just as in the case of a remoulded soil, the bonds offering additional resistance at any given strain level. This concept is similar to two stiffnesses acting in parallel for the same strain response. The proposed model considers the constitutive laws separately for the two components (bond and frictional) and adds the two to get the overall response. The unbonded soil component is described by the well known 'modified Cam clay' model. The response of the bond component is also described by a strain softening elasto-plastic model, considering the behavior to be elastic up to the yield surface and elasto-plastic beyond yield surface. To illustrate the capability of the proposed, model some laboratory test results of both compression and-extension shear tests are predicted. Despite the model being simple, several typical features of the behavior of bonded materials are well reproduced. The model parameters are well defined and easily determinable.
Resumo:
We address the classical problem of delta feature computation, and interpret the operation involved in terms of Savitzky- Golay (SG) filtering. Features such as themel-frequency cepstral coefficients (MFCCs), obtained based on short-time spectra of the speech signal, are commonly used in speech recognition tasks. In order to incorporate the dynamics of speech, auxiliary delta and delta-delta features, which are computed as temporal derivatives of the original features, are used. Typically, the delta features are computed in a smooth fashion using local least-squares (LS) polynomial fitting on each feature vector component trajectory. In the light of the original work of Savitzky and Golay, and a recent article by Schafer in IEEE Signal Processing Magazine, we interpret the dynamic feature vector computation for arbitrary derivative orders as SG filtering with a fixed impulse response. This filtering equivalence brings in significantly lower latency with no loss in accuracy, as validated by results on a TIMIT phoneme recognition task. The SG filters involved in dynamic parameter computation can be viewed as modulation filters, proposed by Hermansky.
Resumo:
The RILEM work-of-fracture method for measuring the specific fracture energy of concrete from notched three-point bend specimens is still the most common method used throughout the world, despite the fact that the specific fracture energy so measured is known to vary with the size and shape of the test specimen. The reasons for this variation have also been known for nearly two decades, and two methods have been proposed in the literature to correct the measured size-dependent specific fracture energy (G(f)) in order to obtain a size-independent value (G(F)). It has also been proved recently, on the basis of a limited set of results on a single concrete mix with a compressive strength of 37 MPa, that when the size-dependent G(f) measured by the RILEM method is corrected following either of these two methods, the resulting specific fracture energy G(F) is very nearly the same and independent of the size of the specimen. In this paper, we will provide further evidence in support of this important conclusion using extensive independent test results of three different concrete mixes ranging in compressive strength from 57 to 122 MPa. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Extending the previous work of Lan et al. J. Chem. Phys., 122, 224315 (2005)], a multi-state potential model for the H atom photodissociation is presented. All three ``disappearing coordinates'' of the departing H atom have been considered. Ab initio CASSCF computations have been carried out for the linear COH geometry of C-2v symmetry, and for several COH angles with the OH group in the ring plane and also perpendicular to the ring plane. By keeping the C6H5O fragment frozen in a C-2v-constrained geometry throughout, we have been able to apply symmetry-based simplifications in the constructions of a diabatic model. This model is able to capture the overall trends of twelve adiabats at both torsional limits for a wide range of COH bend angles.
Resumo:
In this paper, we analyse three commonly discussed `flaws' of linearized elasticity theory and attempt to resolve them. The first `flaw' concerns cylindrically orthotropic material models. Since the work of Lekhnitskii (1968), there has been a growing body of work that continues to this day, that shows that infinite stresses arise with the use of a cylindrically orthotropic material model even in the case of linearized elasticity. Besides infinite stresses, interpenetration of matter is also shown to occur. These infinite stresses and interpenetration occur when the ratio of the circumferential Young modulus to the radial Young modulus is less than one. If the ratio is greater than one, then the stresses at the center of a spinning disk are found to be zero (recall that for an isotropic material model, the stresses are maximum at the center). Thus, the stresses go abruptly from a maximum value to a value of zero as the ratio is increased to a value even slightly above one! One of the explanations provided for this extremely anomalous behaviour is the failure of linearized elasticity to satisfy material frame-indifference. However, if this is the true cause, then the anomalous behaviour should also occur with the use of an isotropic material model, where, no such anomalies are observed. We show that the real cause of the problem is elsewhere and also show how these anomalies can be resolved. We also discuss how the formulation of linearized elastodynamics in the case of small deformations superposed on a rigid motion can be given in a succinct manner. Finally, we show how the long-standing problem of devising three compatibility relations instead of six can be resolved.
Resumo:
Electrical resistance of both the electrodes of a lead-acid battery increases during discharge due to formation of lead sulfate, an insulator. Work of Metzendorf 1] shows that resistance increases sharply at about 65% conversion of active materials, and battery stops discharging once this critical conversion is reached. However, these aspects are not incorporated into existing mathematical models. Present work uses the results of Metzendorf 1], and develops a model that includes the effect of variable resistance. Further, it uses a reasonable expression to account for the decrease in active area during discharge instead of the empirical equations of previous work. The model's predictions are compared with observations of Cugnet et al. 2]. The model is as successful as the non-mechanistic models existing in literature. Inclusion of variation in resistance of electrodes in the model is important if one of the electrodes is a limiting reactant. If active materials are stoichiometrically balanced, resistance of electrodes can be very large at the end of discharge but has only a minor effect on charging of batteries. The model points to the significance of electrical conductivity of electrodes in the charging of deep discharged batteries. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We consider the equation Delta(2)u = g(x, u) >= 0 in the sense of distribution in Omega' = Omega\textbackslash {0} where u and -Delta u >= 0. Then it is known that u solves Delta(2)u = g(x, u) + alpha delta(0) - beta Delta delta(0), for some nonnegative constants alpha and beta. In this paper, we study the existence of singular solutions to Delta(2)u = a(x) f (u) + alpha delta(0) - beta Delta delta(0) in a domain Omega subset of R-4, a is a nonnegative measurable function in some Lebesgue space. If Delta(2)u = a(x) f (u) in Omega', then we find the growth of the nonlinearity f that determines alpha and beta to be 0. In case when alpha = beta = 0, we will establish regularity results when f (t) <= Ce-gamma t, for some C, gamma > 0. This paper extends the work of Soranzo (1997) where the author finds the barrier function in higher dimensions (N >= 5) with a specific weight function a(x) = |x|(sigma). Later, we discuss its analogous generalization for the polyharmonic operator.
Resumo:
In this paper, motivated by observations of non-exponential decay times in the stochastic binding and release of ligand-receptor systems, exemplified by the work of Rogers et al on optically trapped DNA-coated colloids (Rogers et al 2013 Soft Matter 9 6412), we explore the general problem of polymer-mediated surface adhesion using a simplified model of the phenomenon in which a single polymer molecule, fixed at one end, binds through a ligand at its opposite end to a flat surface a fixed distance L away and uniformly covered with receptor sites. Working within the Wilemski-Fixman approximation to diffusion-controlled reactions, we show that for a flexible Gaussian chain, the predicted distribution of times f(t) for which the ligand and receptor are bound is given, for times much shorter than the longest relaxation time of the polymer, by a power law of the form t(-1/4). We also show when the effects of chain stiffness are incorporated into this model (approximately), the structure of f(t) is altered to t(-1/2). These results broadly mirror the experimental trends in the work cited above.
Resumo:
Following the recent work of the authors in development and numerical verification of a new kinematic approach of the limit analysis for surface footings on non-associative materials, a practical procedure is proposed to utilize the theory. It is known that both the peak friction angle and dilation angle depend on the sand density as well as the stress level, which was not the concern of the former work. In the current work, a practical procedure is established to provide a better estimate of the bearing capacity of surface footings on sand which is often non-associative. This practical procedure is based on the results obtained theoretically and requires the density index and the critical state friction angle of the sand. The proposed practical procedure is a simple iterative computational procedure which relates the density index of the sand, stress level, dilation angle, peak friction angle and eventually the bearing capacity. The procedure is described and verified among available footing load test data.
Resumo:
We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.
Assessment of Microscale Test Methods of Peeling and Splitting along Surface of Thin-Film/Substrates
Resumo:
Peel test methods are assessed through being applied to a peeling analysis of the ductile film/ceramic substrate system. Through computing the fracture work of the system using the either beam bend model (BB model) or the general plane analysis model (GPA model), surprisingly, a big difference between both model results is found. Although the BB model can capture the plastic dissipation phenomenon for the ductile film case as the GPA model can, it is much sensitive to the choice of the peeling criterion parameters, and it overestimates the plastic bending effect unable to capture crack tip constraint plasticity. In view of the difficulty of measuring interfacial toughness using peel test method when film is the ductile material, a new test method, split test, is recommended and analyzed using the GPA model. The prediction is applied to a wedge-loaded experiment for Al-alloy double-cantilever beam in literature.
Resumo:
A model is presented for prediction of the fracture energy of ceramic-matrix composites containing dispersed metallic fibres. It is assumed that the work of fracture comes entirely from pull-out and/or plastic deformation of fibres bridging the crack plane. Comparisons are presented between these predictions and experimental measurements made on a commercially-available composite material of this type, containing stainless steel (304) fibres in a matrix predominantly comprising alumina and alumino-silicate phases. Good agreement is observed, and it's noted that there is scope for the fracture energy levels to be high (~20kJm-2). Higher toughness levels are both predicted and observed for coarser fibres, up to a practical limit for the fibre diameter of the order of 0.5mm. Other deductions are also made concerning strategies for optimisation of the toughness of this type of material. © 2010 Elsevier Ltd.
A Semi-Empirical Equation of Penetration Depth on Concrete Target Impacted by Ogive-Nose Projectiles
Resumo:
In this paper, the penetration process of ogive-nose projectiles into the semi-infinite concrete target is investigated by the dimensional analysis method and FEM simulation. With the dimensional analysis, main non-dimensional parameters which control the penetration depth are obtained with some reasonable hypothesis. Then, a new semi-empirical equation is present based on the original work of Forrestal et al., has only two non-dimensional combined variables with definite physical meanings. To verify this equation, prediction results are compared with experiments in a wide variation region of velocity. Then, a commercial FEM code, LS-DYNA, is used to simulate the complex penetration process, that also show the novel semi-empirical equation is reasonable for determining the penetration depth in a concrete target.
Resumo:
Ceramic/metal interfaces were studied that fail by atomistic separation accompanied by plastic dissipation in the metal. The macroscopic toughness of the specific Ni alloy/Al2O3 interface considered is typically on the order of ten times the atomistic work of separation in mode I and even higher if combinations of mode I and mode II act on the interface. Inputs to the computational model of interface toughness are: (i) strain gradient plasticity applied to the Ni alloy with a length parameter determined by an indentation test, and (ii) a potential characterizing mixed mode separation of the interface fit to atomistic results. The roles of the several length parameters in the strain gradient plasticity are determined for indentation and crack growth. One of the parameters is shown to be of dominant importance, thus establishing that indentation can be used to measure the relevant length parameter. Recent results for separation of Ni/Al2O3 interfaces computed by atomistic methods are reviewed, including a set of results computed for mixed mode separation. An approximate potential fit to these results is characterized by the work of separation, the peak separation stress for normal separation and the traction-displacement relation in pure shearing of the interface. With these inputs, the model for steady-state crack growth is used to compute the toughness of the interface under mode I and under the full range of mode mix. The effect of interface strength and the work of separation on macroscopic toughness is computed. Fundamental implications for plasticity-enhanced toughness emerge.