897 resultados para wireless communications
Resumo:
This paper presents research that is being conducted by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) with the aim of investigating the use of wireless sensor networks for automated livestock monitoring and control. It is difficult to achieve practical and reliable cattle monitoring with current conventional technologies due to challenges such as large grazing areas of cattle, long time periods of data sampling, and constantly varying physical environments. Wireless sensor networks bring a new level of possibilities into this area with the potential for greatly increased spatial and temporal resolution of measurement data. CSIRO has created a wireless sensor platform for animal behaviour monitoring where we are able to observe and collect information of animals without significantly interfering with them. Based on such monitoring information, we can identify each animal's behaviour and activities successfully
Resumo:
Agriculture accounts for a significant portion of the GDP in most developed countries. However, managing farms, particularly largescale extensive farming systems, is hindered by lack of data and increasing shortage of labour. We have deployed a large heterogeneous sensor network on a working farm to explore sensor network applications that can address some of the issues identified above. Our network is solar powered and has been running for over 6 months. The current deployment consists of over 40 moisture sensors that provide soil moisture profiles at varying depths, weight sensors to compute the amount of food and water consumed by animals, electronic tag readers, up to 40 sensors that can be used to track animal movement (consisting of GPS, compass and accelerometers), and 20 sensor/actuators that can be used to apply different stimuli (audio, vibration and mild electric shock) to the animal. The static part of the network is designed for 24/7 operation and is linked to the Internet via a dedicated high-gain radio link, also solar powered. The initial goals of the deployment are to provide a testbed for sensor network research in programmability and data handling while also being a vital tool for scientists to study animal behavior. Our longer term aim is to create a management system that completely transforms the way farms are managed.
Resumo:
This paper describes some new wireless sensor hardware developed for pastoral and environmental applications. From our early experiments with Mote hardware we were inspired to develop our devices with improved radio range, solar power capability, mechanical and electrical robustness, and with unique combinations of sensors. Here we describe the design and evolution of a small family of devices: radio/processor board, a soil moisture sensor interface, and a single board multi-sensor unit for animal tracking experiments.
Resumo:
The objective of this paper is to provide an overview of mine automation applications, developed at the Queensland Centre for Advanced Technology (QCAT), which make use of IEEE 802.11b wireless local area networks (WLANs). The paper has been prepared for a 2002 conference entitled "Creating the Virtual Enterprise - Leveraging wireless technology within existing business models for corporate advantage". Descriptions of the WLAN components have been omitted here as such details are presented in the accompanying papers. The structure of the paper is as follows. Application overviews are provided in Sections 2 to 7. Some pertinent strengths and weaknesses are summarised in Section 8. Please refer to http://www.mining-automation.com/ or contact the authors for further information.
Resumo:
Stream ciphers are encryption algorithms used for ensuring the privacy of digital telecommunications. They have been widely used for encrypting military communications, satellite communications, pay TV encryption and for voice encryption of both fixed lined and wireless networks. The current multi year European project eSTREAM, which aims to select stream ciphers suitable for widespread adoptation, reflects the importance of this area of research. Stream ciphers consist of a keystream generator and an output function. Keystream generators produce a sequence that appears to be random, which is combined with the plaintext message using the output function. Most commonly, the output function is binary addition modulo two. Cryptanalysis of these ciphers focuses largely on analysis of the keystream generators and of relationships between the generator and the keystream it produces. Linear feedback shift registers are widely used components in building keystream generators, as the sequences they produce are well understood. Many types of attack have been proposed for breaking various LFSR based stream ciphers. A recent attack type is known as an algebraic attack. Algebraic attacks transform the problem of recovering the key into a problem of solving multivariate system of equations, which eventually recover the internal state bits or the key bits. This type of attack has been shown to be effective on a number of regularly clocked LFSR based stream ciphers. In this thesis, algebraic attacks are extended to a number of well known stream ciphers where at least one LFSR in the system is irregularly clocked. Applying algebriac attacks to these ciphers has only been discussed previously in the open literature for LILI-128. In this thesis, algebraic attacks are first applied to keystream generators using stop-and go clocking. Four ciphers belonging to this group are investigated: the Beth-Piper stop-and-go generator, the alternating step generator, the Gollmann cascade generator and the eSTREAM candidate: the Pomaranch cipher. It is shown that algebraic attacks are very effective on the first three of these ciphers. Although no effective algebraic attack was found for Pomaranch, the algebraic analysis lead to some interesting findings including weaknesses that may be exploited in future attacks. Algebraic attacks are then applied to keystream generators using (p; q) clocking. Two well known examples of such ciphers, the step1/step2 generator and the self decimated generator are investigated. Algebraic attacks are shown to be very powerful attack in recovering the internal state of these generators. A more complex clocking mechanism than either stop-and-go or the (p; q) clocking keystream generators is known as mutual clock control. In mutual clock control generators, the LFSRs control the clocking of each other. Four well known stream ciphers belonging to this group are investigated with respect to algebraic attacks: the Bilateral-stop-and-go generator, A5/1 stream cipher, Alpha 1 stream cipher, and the more recent eSTREAM proposal, the MICKEY stream ciphers. Some theoretical results with regards to the complexity of algebraic attacks on these ciphers are presented. The algebraic analysis of these ciphers showed that generally, it is hard to generate the system of equations required for an algebraic attack on these ciphers. As the algebraic attack could not be applied directly on these ciphers, a different approach was used, namely guessing some bits of the internal state, in order to reduce the degree of the equations. Finally, an algebraic attack on Alpha 1 that requires only 128 bits of keystream to recover the 128 internal state bits is presented. An essential process associated with stream cipher proposals is key initialization. Many recently proposed stream ciphers use an algorithm to initialize the large internal state with a smaller key and possibly publicly known initialization vectors. The effect of key initialization on the performance of algebraic attacks is also investigated in this thesis. The relationships between the two have not been investigated before in the open literature. The investigation is conducted on Trivium and Grain-128, two eSTREAM ciphers. It is shown that the key initialization process has an effect on the success of algebraic attacks, unlike other conventional attacks. In particular, the key initialization process allows an attacker to firstly generate a small number of equations of low degree and then perform an algebraic attack using multiple keystreams. The effect of the number of iterations performed during key initialization is investigated. It is shown that both the number of iterations and the maximum number of initialization vectors to be used with one key should be carefully chosen. Some experimental results on Trivium and Grain-128 are then presented. Finally, the security with respect to algebraic attacks of the well known LILI family of stream ciphers, including the unbroken LILI-II, is investigated. These are irregularly clock- controlled nonlinear filtered generators. While the structure is defined for the LILI family, a particular paramater choice defines a specific instance. Two well known such instances are LILI-128 and LILI-II. The security of these and other instances is investigated to identify which instances are vulnerable to algebraic attacks. The feasibility of recovering the key bits using algebraic attacks is then investigated for both LILI- 128 and LILI-II. Algebraic attacks which recover the internal state with less effort than exhaustive key search are possible for LILI-128 but not for LILI-II. Given the internal state at some point in time, the feasibility of recovering the key bits is also investigated, showing that the parameters used in the key initialization process, if poorly chosen, can lead to a key recovery using algebraic attacks.
Resumo:
As the acceptance and popularity of wireless networking technologies has proliferated, the security of the IEEE 802.11 wireless local area network (WLAN) has advanced in leaps and bounds. From tenuous beginnings, where the only safe way to deploy a WLAN was to assume it was hostile and employ higherlayer information security controls, to the current state of the art, all manner of improvements have been conceived and many implemented. This work investigates some of the remaining issues surrounding IEEE 802.11 WLAN operation. While the inherent issues in WLAN deployments and the problems of the original Wired Equivalent Privacy (WEP) provisions are well known and widely documented, there still exist a number of unresolved security issues. These include the security of management and control frames and the data link layer protocols themselves. This research introduces a novel proposal to enhance security at the link layer of IEEE 802.11 WLANs and then conducts detailed theoretical and empirical investigation and analysis of the eects of such proposals. This thesis �rst de�nes the state of the art in WLAN technology and deployment, including an overview of the current and emerging standards, the various threats, numerous vulnerabilities and current exploits. The IEEE 802.11i MAC security enhancements are discussed in detail, along with the likely outcomes of the IEEE 802.11 Task Group W1, looking into protected management frames. The problems of the remaining unprotected management frames, the unprotected control frames and the unprotected link layer headers are reviewed and a solution is hypothesised, to encrypt the entire MAC Protocol Data Unit (MPDU), including the MAC headers, not just the MAC Service Data Unit (MSDU) commonly performed by existing protocols. The proposal is not just to encrypt a copy of the headers while still using cleartext addresses to deliver the frame, as used by some existing protocols to support the integrity and authenticity of the headers, but to pass the entire MPDU only as ciphertext to also support the con�dentiality of the frame header information. This necessitates the decryption of every received frame using every available key before a station can determine if it is the intended recipient. As such, this raises serious concerns as to the viability of any such proposal due to the likely impact on throughput and scalability. The bulk of the research investigates the impacts of such proposals on the current WLAN protocols. Some possible variations to the proposal are also provided to enhance both utility and speed. The viability this proposal with respect to the eect on network throughput is then tested using a well known and respected network simulation tool, along with a number of analysis tools developed speci�cally for the data generated here. The simulator's operation is �rst validated against recognised test outputs, before a comprehensive set of control data is established, and then the proposal is tested and and compared against the controls. This detailed analysis of the various simulations should be of bene�t to other researchers who need to validate simulation results. The analysis of these tests indicate areas of immediate improvement and so the protocols are adjusted and a further series of experiments conducted. These �nal results are again analysed in detail and �nal appraisals provided.
Resumo:
This paper considers the use of servo-mechanisms as part of a tightly integrated homogeneous Wireless Multi- media Sensor Network (WMSN). We describe the design of our second generation WMSN node platform, which has increased image resolution, in-built audio sensors, PIR sensors, and servo- mechanisms. These devices have a wide disparity in their energy consumption and in the information quality they return. As a result, we propose a framework that establishes a hierarchy of devices (sensors and actuators) within the node and uses frequent sampling of cheaper devices to trigger the activation of more energy-hungry devices. Within this framework, we consider the suitability of servos for WMSNs by examining the functional characteristics and by measuring the energy consumption of 2 analog and 2 digital servos, in order to determine their impact on overall node energy cost. We also implement a simple version of our hierarchical sampling framework to evaluate the energy consumption of servos relative to other node components. The evaluation results show that: (1) the energy consumption of servos is small relative to audio/image signal processing energy cost in WMSN nodes; (2) digital servos do not necessarily consume as much energy as is currently believed; and (3) the energy cost per degree panning is lower for larger panning angles.
Resumo:
Tracking/remote monitoring systems using GNSS are a proven method to enhance the safety and security of personnel and vehicles carrying precious or hazardous cargo. While GNSS tracking appears to mitigate some of these threats, if not adequately secured, it can be a double-edged sword allowing adversaries to obtain sensitive shipment and vehicle position data to better coordinate their attacks, and to provide a false sense of security to monitoring centers. Tracking systems must be designed with the ability to perform route-compliance and thwart attacks ranging from low-level attacks such as the cutting of antenna cables to medium and high-level attacks involving radio jamming and signal / data-level simulation, especially where the goods transported have a potentially high value to terrorists. This paper discusses the use of GNSS in critical tracking applications, addressing the mitigation of GNSS security issues, augmentation systems and communication systems in order to provide highly robust and survivable tracking systems.
Resumo:
Wireless Multi-media Sensor Networks (WMSNs) have become increasingly popular in recent years, driven in part by the increasing commoditization of small, low-cost CMOS sensors. As such, the challenge of automatically calibrating these types of cameras nodes has become an important research problem, especially for the case when a large quantity of these type of devices are deployed. This paper presents a method for automatically calibrating a wireless camera node with the ability to rotate around one axis. The method involves capturing images as the camera is rotated and computing the homographies between the images. The camera parameters, including focal length, principal point and the angle and axis of rotation can then recovered from two or more homographies. The homography computation algorithm is designed to deal with the limited resources of the wireless sensor and to minimize energy con- sumption. In this paper, a modified RANdom SAmple Consensus (RANSAC) algorithm is proposed to effectively increase the efficiency and reliability of the calibration procedure.
Resumo:
Wireless network technologies, such as IEEE 802.11 based wireless local area networks (WLANs), have been adopted in wireless networked control systems (WNCS) for real-time applications. Distributed real-time control requires satisfaction of (soft) real-time performance from the underlying networks for delivery of real-time traffic. However, IEEE 802.11 networks are not designed for WNCS applications. They neither inherently provide quality-of-service (QoS) support, nor explicitly consider the characteristics of the real-time traffic on networked control systems (NCS), i.e., periodic round-trip traffic. Therefore, the adoption of 802.11 networks in real-time WNCSs causes challenging problems for network design and performance analysis. Theoretical methodologies are yet to be developed for computing the best achievable WNCS network performance under the constraints of real-time control requirements. Focusing on IEEE 802.11 distributed coordination function (DCF) based WNCSs, this paper analyses several important NCS network performance indices, such as throughput capacity, round trip time and packet loss ratio under the periodic round trip traffic pattern, a unique feature of typical NCSs. Considering periodic round trip traffic, an analytical model based on Markov chain theory is developed for deriving these performance indices under a critical real-time traffic condition, at which the real-time performance constraints are marginally satisfied. Case studies are also carried out to validate the theoretical development.