919 resultados para waste water management
Resumo:
The research work has dealt with the study of new catalytic processes for the synthesis of fine chemicals belonging to the class of phenolics, namely 2-phenoxyethanol and hydroxytyrosol. The two synthetic procedures investigated have the advantages of being much closer to the Green Chemistry principles than those currently used industrially. In both cases, the challenge was that of finding catalysts and methods which led to the production of less waste, and used less hazardous chemicals, safer solvents, and reusable heterogeneous catalysts. In the case of 2-phenoxyethanol, the process investigated involves the use of ethylene carbonate (EC) as the reactant for phenol O-hydroxyethylation, in place of ethylene oxide. Besides being a safer reactant, the major advantage of using EC in the new synthesis is the better selectivity to the desired product achieved. Moreover, the solid catalyst based on Na-mordenite was fully recyclable. The reaction mechanism and the effect of the Si/Al ratio in the mordenite were investigated. In the case of hydroxytyrosol, which is one of the most powerful natural antioxidants, a new synthetic procedure was investigated; in fact, the method currently employed, the hydrolysis of oleuropein, an ester extracted from the waste water processing of the olive, makes use of large amounts of organic solvents (hexane, ethyl acetate), and involves several expensive steps of purification. The synthesis procedure set up involves first the reaction between catechol and 2,2-dimethoxyacetaldehyde, followed by the one-pot reduction of the intermediate to give the desired product. Both steps were optimized, in terms of catalyst used, and of reaction conditions, that allowed to reach ca 70% yield in each step. The reaction mechanism was investigated and elucidated. During a 3-month period spent at the University of Valencia (with Prof. A. Corma’s group), a process for the production of diesel additives (2,5-bis(propoxymethyl)furan) from fructose has been investigated.
Resumo:
In der Erdöl– und Gasindustrie sind bildgebende Verfahren und Simulationen auf der Porenskala im Begriff Routineanwendungen zu werden. Ihr weiteres Potential lässt sich im Umweltbereich anwenden, wie z.B. für den Transport und Verbleib von Schadstoffen im Untergrund, die Speicherung von Kohlendioxid und dem natürlichen Abbau von Schadstoffen in Böden. Mit der Röntgen-Computertomografie (XCT) steht ein zerstörungsfreies 3D bildgebendes Verfahren zur Verfügung, das auch häufig für die Untersuchung der internen Struktur geologischer Proben herangezogen wird. Das erste Ziel dieser Dissertation war die Implementierung einer Bildverarbeitungstechnik, die die Strahlenaufhärtung der Röntgen-Computertomografie beseitigt und den Segmentierungsprozess dessen Daten vereinfacht. Das zweite Ziel dieser Arbeit untersuchte die kombinierten Effekte von Porenraumcharakteristika, Porentortuosität, sowie die Strömungssimulation und Transportmodellierung in Porenräumen mit der Gitter-Boltzmann-Methode. In einer zylindrischen geologischen Probe war die Position jeder Phase auf Grundlage der Beobachtung durch das Vorhandensein der Strahlenaufhärtung in den rekonstruierten Bildern, das eine radiale Funktion vom Probenrand zum Zentrum darstellt, extrahierbar und die unterschiedlichen Phasen ließen sich automatisch segmentieren. Weiterhin wurden Strahlungsaufhärtungeffekte von beliebig geformten Objekten durch einen Oberflächenanpassungsalgorithmus korrigiert. Die Methode der „least square support vector machine” (LSSVM) ist durch einen modularen Aufbau charakterisiert und ist sehr gut für die Erkennung und Klassifizierung von Mustern geeignet. Aus diesem Grund wurde die Methode der LSSVM als pixelbasierte Klassifikationsmethode implementiert. Dieser Algorithmus ist in der Lage komplexe geologische Proben korrekt zu klassifizieren, benötigt für den Fall aber längere Rechenzeiten, so dass mehrdimensionale Trainingsdatensätze verwendet werden müssen. Die Dynamik von den unmischbaren Phasen Luft und Wasser wird durch eine Kombination von Porenmorphologie und Gitter Boltzmann Methode für Drainage und Imbibition Prozessen in 3D Datensätzen von Böden, die durch synchrotron-basierte XCT gewonnen wurden, untersucht. Obwohl die Porenmorphologie eine einfache Methode ist Kugeln in den verfügbaren Porenraum einzupassen, kann sie dennoch die komplexe kapillare Hysterese als eine Funktion der Wassersättigung erklären. Eine Hysterese ist für den Kapillardruck und die hydraulische Leitfähigkeit beobachtet worden, welche durch die hauptsächlich verbundenen Porennetzwerke und der verfügbaren Porenraumgrößenverteilung verursacht sind. Die hydraulische Konduktivität ist eine Funktion des Wassersättigungslevels und wird mit einer makroskopischen Berechnung empirischer Modelle verglichen. Die Daten stimmen vor allem für hohe Wassersättigungen gut überein. Um die Gegenwart von Krankheitserregern im Grundwasser und Abwässern vorhersagen zu können, wurde in einem Bodenaggregat der Einfluss von Korngröße, Porengeometrie und Fluidflussgeschwindigkeit z.B. mit dem Mikroorganismus Escherichia coli studiert. Die asymmetrischen und langschweifigen Durchbruchskurven, besonders bei höheren Wassersättigungen, wurden durch dispersiven Transport aufgrund des verbundenen Porennetzwerks und durch die Heterogenität des Strömungsfeldes verursacht. Es wurde beobachtet, dass die biokolloidale Verweilzeit eine Funktion des Druckgradienten als auch der Kolloidgröße ist. Unsere Modellierungsergebnisse stimmen sehr gut mit den bereits veröffentlichten Daten überein.
Resumo:
The South Florida Water Management District (SFWMD) manages and operates numerous water control structures that are subject to scour. In an effort to reduce scour downstream of these gated structures, laboratory experiments were performed to investigate the effect of active air-injection downstream of the terminal structure of a gated spillway on the depth of the scour hole. A literature review involving similar research revealed significant variables such as the ratio of headwater-to-tailwater depths, the diffuser angle, sediment uniformity, and the ratio of air-to-water volumetric discharge values. The experimental design was based on the analysis of several of these non-dimensional parameters. Bed scouring at stilling basins downstream of gated spillways has been identified as posing a serious risk to the spillway’s structural stability. Although this type of scour has been studied in the past, it continues to represent a real threat to water control structures and requires additional attention. A hydraulic scour channel comprised of a head tank, flow straightening section, gated spillway, stilling basin, scour section, sediment trap, and tail-tank was used to further this analysis. Experiments were performed in a laboratory channel consisting of a 1:30 scale model of the SFWMD S65E spillway structure. To ascertain the feasibility of air injection for scour reduction a proof-of-concept study was performed. Experiments were conducted without air entrainment and with high, medium, and low air entrainment rates for high and low headwater conditions. For the cases with no air entrainment it was found that there was excessive scour downstream of the structure due to a downward roller formed upon exiting the downstream sill of the stilling basin. When air was introduced vertically just downstream of, and at the same level as, the stilling basin sill, it was found that air entrainment does reduce scour depth by up to 58% depending on the air flow rate, but shifts the deepest scour location to the sides of the channel bed instead of the center. Various hydraulic flow conditions were tested without air injection to verify which scenario caused more scour. That scenario, uncontrolled free, in which water does not contact the gate and the water elevation in the stilling basin is lower than the spillway crest, would be used for the remainder of experiments testing air injection. Various air flow rates, diffuser elevations, air hole diameters, air hole spacings, diffuser angles and widths were tested in over 120 experiments. Optimal parameters include air injection at a rate that results in a water-to-air ratio of 0.28, air holes 1.016mm in diameter the entire width of the stilling basin, and a vertically orientated injection pattern. Detailed flow measurements were collected for one case using air injection and one without. An identical flow scenario was used for each experiment, namely that of a high flow rate and upstream headwater depth and a low tailwater depth. Equilibrium bed scour and velocity measurements were taken using an Acoustic Doppler Velocimeter at nearly 3000 points. Velocity data was used to construct a vector plot in order to identify which flow components contribute to the scour hole. Additionally, turbulence parameters were calculated in an effort to help understand why air-injection reduced bed scour. Turbulence intensities, normalized mean flow, normalized kinetic energy, and anisotropy of turbulence plots were constructed. A clear trend emerged that showed air-injection reduces turbulence near the bed and therefore reduces scour potential.
Resumo:
Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.
Resumo:
Water management in the porous media of proton exchange membrane (PEM) fuel cells, catalyst layer and porous transport layers (PTL) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. The data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited to porosimetry. A new method and apparatus for measuring the percolation pressure in the catalyst layer has been developed. The experimental setup is similar to a Hele-Shaw experiment where samples are compressed and a fluid is injected into the sample. Pressure-Wetted Volume plots as well as Permeability plots for the catalyst layers were generated from the percolation testing. PTL samples were also characterizes using a Hele-Shaw method. Characterization for the PTLs was completed for the three states: new, conditioned and aged. This is represented in a Ce-t* plots, which show a large offset between new and aged samples.
Resumo:
Water springs are the principal source of water for many localities in Central America, including the municipality of Concepción Chiquirichapa in the Western Highlands of Guatemala. Long-term monitoring records are critical for informed water management as well as resource forecasting, though data are scarce and monitoring in low-resource settings presents special challenges. Spring discharge was monitored monthly in six municipal springs during the author’s Peace Corps assignment, from May 2011 to March 2012, and water level height was monitored in two spring boxes over the same time period using automated water-level loggers. The intention of this approach was to circumvent the need for frequent and time-intensive manual measurement by identifying a fixed relationship between discharge and water level. No such relationship was identified, but the water level record reveals that spring yield increased for four months following Tropical Depression 12E in October 2011. This suggests that the relationship between extreme precipitation events and long-term water spring yields in Concepción should be examined further. These limited discharge data also indicate that aquifer baseflow recession and catchment water balance could be successfully characterized if a long-term discharge record were established. This study also presents technical and social considerations for selecting a methodology for spring discharge measurement and highlights the importance of local interest in conducting successful community-based research in intercultural low-resource settings.
Resumo:
The existence and morphology, as well as the dynamics of micro-scale gas-liquid interfaces is investigated numerically and experimentally. These studies can be used to assess liquid management issues in microsystems such as PEMFC gas flow channels, and are meant to open new research perspectives in two-phase flow, particularly in film deposition on non-wetting surfaces. For example the critical plug volume data can be used to deliver desired length plugs, or to determine the plug formation frequency. The dynamics of gas-liquid interfaces, of interest for applications involving small passages (e.g. heat exchangers, phase separators and filtration systems), was investigated using high-speed microscopy - a method that also proved useful for the study of film deposition processes. The existence limit for a liquid plug forming in a mixed wetting channel is determined by numerical simulations using Surface Evolver. The plug model simulate actual conditions in the gas flow channels of PEM fuel cells, the wetting of the gas diffusion layer (GDL) side of the channel being different from the wetting of the bipolar plate walls. The minimum plug volume, denoted as critical volume is computed for a series of GDL and bipolar plate wetting properties. Critical volume data is meant to assist in the water management of PEMFC, when corroborated with experimental data. The effect of cross section geometry is assessed by computing the critical volume in square and trapezoidal channels. Droplet simulations show that water can be passively removed from the GDL surface towards the bipolar plate if we take advantage on differing wetting properties between the two surfaces, to possibly avoid the gas transport blockage through the GDL. High speed microscopy was employed in two-phase and film deposition experiments with water in round and square capillary tubes. Periodic interface destabilization was observed and the existence of compression waves in the gas phase is discussed by taking into consideration a naturally occurring convergent-divergent nozzle formed by the flowing liquid phase. The effect of channel geometry and wetting properties was investigated through two-phase water-air flow in square and round microchannels, having three static contact angles of 20, 80 and 105 degrees. Four different flow regimes are observed for a fixed flow rate, this being thought to be caused by the wetting behavior of liquid flowing in the corners as well as the liquid film stability. Film deposition experiments in wetting and non-wetting round microchannels show that a thicker film is deposited for wetting conditions departing from the ideal 0 degrees contact angle. A film thickness dependence with the contact angle theta as well as the Capillary number, in the form h_R ~ Ca^(2/3)/ cos(theta) is inferred from scaling arguments, for contact angles smaller than 36 degrees. Non-wetting film deposition experiments reveal that a film significantly thicker than the wetting Bretherton film is deposited. A hydraulic jump occurs if critical conditions are met, as given by a proposed nondimensional parameter similar to the Froude number. Film thickness correlations are also found by matching the measured and the proposed velocity derived in the shock theory. The surface wetting as well as the presence of the shock cause morphological changes in the Taylor bubble flow.
Resumo:
The paper addresses the question of which factors drive the formation of policy preferences when there are remaining uncertainties about the causes and effects of the problem at stake. To answer this question we examine policy preferences reducing aquatic micropollutants, a specific case of water protection policy and different actor groups (e.g. state, science, target groups). Here, we contrast two types of policy preferences: a) preventive or source-directed policies, which mitigate pollution in order to avoid contact with water; and b) reactive or end-of-pipe policies, which filter water already contaminated by pollutants. In a second step, we analyze the drivers for actors’ policy preferences by focusing on three sets of explanations, i.e. participation, affectedness and international collaborations. The analysis of our survey data, qualitative interviews and regression analysis of the Swiss political elite show that participation in the policy-making process leads to knowledge exchange and reduces uncertainties about the policy problem, which promotes preferences for preventive policies. Likewise, actors who are affected by the consequences of micropollutants, such as consumer or environmental associations, opt for anticipatory policies. Interestingly, we find that uncertainties about the effectiveness of preventive policies can promote preferences for end-of-pipe policies. While preventive measures often rely on (uncertain) behavioral changes of target groups, reactive policies are more reliable when it comes to fulfilling defined policy goals. Finally, we find that in a transboundary water management context, actors with international collaborations prefer policies that produce immediate and reliable outcomes.
Resumo:
A Framework for a Consultation Process: Transboundary cooperation and sustainable water management is urgently needed in the up-stream/down-stream situation of the Umbeluzi River Basin between the Kingdom of Swaziland and the Republic of Mozambique. Thus, the Joint Water Commission (JWC) of the two riparian countries initiated the Umbeluzi River Basin Initiative (URBI) with the objective to develop a joint management plan of the river basin. In response to the request by SADC as well as SDC, a collaboration within CDE’s Eastern and Southern Africa Partnership Programme ESAPP was agreed upon. The project’s general objective is to provide conceptual and methodological support in the design of a consultative process with the aim to assure the participation of all water users within the river basin.
Resumo:
Land and water management in semi-arid regions requires detailed information on precipitation distribution, including extremes, and changes therein. Such information is often lacking. This paper describes statistics of mean and extreme precipitation in a unique data set from the Mount Kenya region, encompassing around 50 stations with at least 30 years of data. We describe the data set, including quality control procedures and statistical break detection. Trends in mean precipitation and extreme indices calculated from these data for individual rainy seasons are compared with corresponding trends in reanalysis products. From 1979 to 2011, mean precipitation decreased at 75% of the stations during the ‘long rains’ (March to May) and increased at 70% of the stations during the ‘short rains’ (October to December). Corresponding trends are found in the number of heavy precipitation days, and maximum of consecutive 5-day precipitation. Conversely, an increase in consecutive dry days within both main rainy seasons is found. However, trends are only statistically significant in very few cases. Reanalysis data sets agree with observations with respect to interannual variability, while correlations are considerably lower for monthly deviations (ratios) from the mean annual cycle. While some products well reproduce the rainfall climatology and some the spatial trend pattern, no product reproduces both.
Resumo:
This is an investigation into the microbially mediated processes involved in the transformation of arsenic. With the recent change in the Federal Maximum Contaminant Level for arsenic in drinking water, an increasing amount of resources are being devoted to understanding the mechanisms involved in the movement of arsenic. Arsenic in drinking water typically comes from natural sources, but the triggers that result in increased release of arsenic from parent material are poorly understood. Knowledge of these processes is necessary in order to make sound engineering decisions regarding drinking water management practices. Recent years have brought forth the idea that bacteria play a significant role in arsenic cycling. Groundwater is a major source of potable water in this and many other countries. To date, no reports have been made indicating the presence and activity of arsenate reducing bacteria in groundwater settings, which may increase dissolved arsenic concentrations. This research was designed to address this question and has shown that these bacteria are present in Maine groundwater. Two Maine wells were sampled in order to culture resident bacteria that are capable of dissimilatory arsenate reduction. Samples were collected using anaerobic techniques fiom wells in Northport and Green Lake. These samples were amended with specific compounds to enrich the resident population of arsenate utilizing bacteria. These cultures were monitored over time to establish rates of arsenate reduction. Cultures fiom both sites exhibited arsenate reduction in initial enrichment cultures. Isolates obtained fiom the Green Lake enrichments, however, did not reduce arsenate. This indicates either that a symbiotic relationship was required for the observed arsenate reduction or that fast-growing fermentative organisms that could survive in high arsenate media were picked in the isolation procedure. The Northport cultures exhibited continued arsenate reduction after isolation and successive transfers into fiesh media. The cultured bacteria reduced the majority of 1 a arsenate solutions in less than one week, accompanied by a corresponding oxidation of lactate. The 16s rRNA fiom the isolate was arnplifled and sequenced. The results of the DNA sequence analysis indicate that the rRNA sequence of the bacteria isolated at the Northport site is unique. This means that this strain of bacteria has not been reported before. It is in the same taxonomic subgroup as two previously described arsenate respirers. The implications of this study are significant. The fact that resident bacteria are capable of reducing arsenate has implications for water management practices. Reduction of arsenate to arsenite increases the mobility of the compound, as well as the toxicity. An understanding of the activity of these types of organisms is necessary in order to understand the contribution they are making to arsenic concentrations in drinking water. The next step in this work would be to quantitj the actual loading of dissolved arsenic present in aquifers because of these organisms.
Resumo:
The skinned portions of baseball and softball infields vary widely with respect to soil texture, applied amendments and conditioners, and water management. No studies have been reported that quantify the effects of these varying construction and maintenance practices on the playability of the skinned portions of infields. In Connecticut, USA, skinned infield plots were constructed from five different soils (silt loam, loam, coarse sandy loam, loamy sand, loamy coarse sand) and amended with four rates of calcined clay (0, 4.9, 9.8, 19.6 kg m–2) to determine the effects on surface hardness, traction, and ball-to-surface friction (static and dynamic) at varying soil moisture contents (10, 14, and 18%). Bulk density, saturated hydraulic conductivity, and shear strength of the different soil–calcined clay rate combinations were determined. Increasing the rate of calcined clay decreased bulk density and shear strengths, and increased saturated hydraulic conductivity. Surface hardness increased more with coarse-textured soils and increasing calcined clay rate, but decreased more with fine-textured soils and increasing soil moisture. Increasing the calcined clay rate resulted in decreases in ball-to-surface static friction across all soils and decreased dynamic friction with the fine-textured soils. Increases in soil moisture increased friction in all soils. The fine-textured soils had greater traction than the sandy soils, but no consistent calcined clay or moisture effects on traction were observed. Shear strength of the soils was highly correlated with traction and friction. The results suggest that differences in skinned infield soils are quantifiable, which could lead to the development of playing surface standards.
Resumo:
Las aguas residuales son potenciales portadoras de enteroparásitos patógenos para el hombre cuya dosis infectiva puede ser mínima y prolongado el tiempo de sobrevivencia de huevos y quistes en el ambiente. La reglamentación limita la presencia de huevos de helmintos y, hasta el año 2000, no proponía una técnica para su detección. Este trabajo se realizó para caracterizar parasitológicamente los efluentes procedentes de agroindustrias. La capacitación en la identificación microscópica demandó la confección de fichas que describen las características de huevos de helmintos. Se efectuaron ensayos con muestras de bodegas y aceiteras en los puntos detectados de contaminación. Los métodos fueron adaptados a las particularidades de los efluentes. Los resultados no señalaron presencia de helmintos; no obstante, se hallaron Cyclospora e Isospora, protozoarios que, por su alto poder infectivo, también constituyen un riesgo para el hombre. Sin embargo, no están contemplados por la legislación. Respecto a helmintos, es necesario un estudio comparativo de las técnicas de detección para efluentes agroindustriales, con el fin de establecer las que optimicen su recuperación. En cuanto a otras especies es preciso continuar investigando su presencia para evaluar la conveniencia de incorporarlas a la reglamentación.