850 resultados para visual performance
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.
Resumo:
Position estimation for planetary rovers has been typically limited to odometry based on proprioceptive measurements such as the integration of distance traveled and measurement of heading change. Here we present and compare two methods of online visual odometry suited for planetary rovers. Both methods use omnidirectional imagery to estimate motion of the rover. One method is based on robust estimation of optical flow and subsequent integration of the flow. The second method is a full structure-from-motion solution. To make the comparison meaningful we use the same set of raw corresponding visual features for each method. The dataset is an sequence of 2000 images taken during a field experiment in the Atacama desert, for which high resolution GPS ground truth is available.
Resumo:
It is now well accepted that effective implementation of market orientation leads to superior performance. This paper theorises that market orientation and an innovative culture enable organisations to achieve higher brand performance. To test this proposition data were gathered from a sample of firms across a range of industries. The results support the premise that market orientation and innovative cultures improve brand performance and that innovative culture influences market orientation. The results also indicate that innovative culture is the stronger driver of brand performance over market orientation.
Resumo:
Asset management in local government is an emerging discipline and over a decade has become a crucial aspect towards a more efficient and effective organisation. One crucial feature in the public asset management is performance measurement toward the public real estates. This measurement critically at the important component of public wealth and seeks to apply a standard of economic efficiency and effective organisational management especially in such global financial crisis condition. This paper aims to identify global economic crisis effect and proposes alternative solution for local governments to softening the impact of the crisis to the local governments organisation. This study found that the most suitable solution for local government to solve the global economic crisis in Indonesia is application of performance measurement in its asset management. Thus, it is important to develop performance measurement system in local government asset management process. This study provides suggestions from published documents and literatures. The paper also discusses the elements of public real estate performance measurement. The measurement of performance has become an essential component of the strategic thinking of assets owners and managers. Without having a formal measurement system for performance, it is difficult to plan, control and improve local government real estate management system. A close look at best practices in public sectors reveals that in most cases these practices were transferred from private sector reals estate management under the direction of real estate experts retained by government. One of the most significant advances in government property performance measurement resulted from recognition that the methodology used by private sector, non real estate corporations for managing their real property offered a valuable prototype for local governments. In general, there are two approaches most frequently used to measure performance of public organisations. Those are subjective and objective measures. Finally, findings from this study provides useful input for the local government policy makers, scholars and asset management practitioners to establish a public real estate performance measurement system toward more efficient and effective local governments in managing their assets as well as increasing public services quality in order to soften the impact of global financial crisis.
Resumo:
The experimental literature and studies using survey data have established that people care a great deal about their relative economic position and not solely, as standard economic theory assumes, about their absolute economic position. Individuals are concerned about social comparisons. However, behavioral evidence in the field is rare. This paper provides an empirical analysis, testing the model of inequality aversion using two unique panel data sets for basketball and soccer players. We find support that the concept of inequality aversion helps to understand how the relative income situation affects performance in a real competitive environment with real tasks and real incentives.
Resumo:
Visual localization systems that are practical for autonomous vehicles in outdoor industrial applications must perform reliably in a wide range of conditions. Changing outdoor conditions cause difficulty by drastically altering the information available in the camera images. To confront the problem, we have developed a visual localization system that uses a surveyed three-dimensional (3D)-edge map of permanent structures in the environment. The map has the invariant properties necessary to achieve long-term robust operation. Previous 3D-edge map localization systems usually maintain a single pose hypothesis, making it difficult to initialize without an accurate prior pose estimate and also making them susceptible to misalignment with unmapped edges detected in the camera image. A multihypothesis particle filter is employed here to perform the initialization procedure with significant uncertainty in the vehicle's initial pose. A novel observation function for the particle filter is developed and evaluated against two existing functions. The new function is shown to further improve the abilities of the particle filter to converge given a very coarse estimate of the vehicle's initial pose. An intelligent exposure control algorithm is also developed that improves the quality of the pertinent information in the image. Results gathered over an entire sunny day and also during rainy weather illustrate that the localization system can operate in a wide range of outdoor conditions. The conclusion is that an invariant map, a robust multihypothesis localization algorithm, and an intelligent exposure control algorithm all combine to enable reliable visual localization through challenging outdoor conditions.
Resumo:
This paper describes a biologically inspired approach to vision-only simultaneous localization and mapping (SLAM) on ground-based platforms. The core SLAM system, dubbed RatSLAM, is based on computational models of the rodent hippocampus, and is coupled with a lightweight vision system that provides odometry and appearance information. RatSLAM builds a map in an online manner, driving loop closure and relocalization through sequences of familiar visual scenes. Visual ambiguity is managed by maintaining multiple competing vehicle pose estimates, while cumulative errors in odometry are corrected after loop closure by a map correction algorithm. We demonstrate the mapping performance of the system on a 66 km car journey through a complex suburban road network. Using only a web camera operating at 10 Hz, RatSLAM generates a coherent map of the entire environment at real-time speed, correctly closing more than 51 loops of up to 5 km in length.
Resumo:
Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.
Resumo:
The importance of pacing for middle-distance performance is well recognized, yet previous research has produced equivocal results. Twenty-six trained male cyclists (O2peak 62.8 ± 5.9 ml · kg-1 · min-1; maximal aerobic power output 340 ± 43 W; mean ± s) performed three cycling time-trials where the total external work (102.7 ± 13.7 kJ) for each trial was identical to the best of two 5-min habituation trials. Markers of aerobic and anaerobic metabolism were assessed in 12 participants. Power output during the first quarter of the time-trials was fixed to control external mechanical work done (25.7 ± 3.4 kJ) and induce fast-, even-, and slow-starting strategies (60, 75, and 90 s, respectively). Finishing times for the fast-start time-trial (4:53 ± 0:11 min:s) were shorter than for the even-start (5:04 ± 0:11 min:s; 95% CI = 5 to 18 s, effect size = 0.65, P < 0.001) and slow-start time-trial (5:09 ± 0:11 min:s; 95% CI = 7 to 24 s, effect size = 1.00, P < 0.001). Mean O2 during the fast-start trials (4.31 ± 0.51 litres · min-1) was 0.18 ± 0.19 litres · min-1 (95% CI = 0.07 to 0.30 litres · min-1, effect size = 0.94, P = 0.003) higher than the even- and 0.18 ± 0.20 litres · min-1 (95% CI = 0.5 to 0.30 litres · min-1, effect size = 0.86, P = 0.007) higher than the slow-start time-trial. Oxygen deficit was greatest during the first quarter of the fast-start trial but was lower than the even- and slow-start trials during the second quarter of the trial. Blood lactate and pH were similar between the three trials. In conclusion, performance during a 5-min cycling time-trial was improved with the adoption of a fast- rather than an even- or slow-starting strategy.
Resumo:
The Simultaneous Localisation And Mapping (SLAM) problem is one of the major challenges in mobile robotics. Probabilistic techniques using high-end range finding devices are well established in the field, but recent work has investigated vision-only approaches. We present an alternative approach to the leading existing techniques, which extracts approximate rotational and translation velocity information from a vehicle-mounted consumer camera, without tracking landmarks. When coupled with an existing SLAM system, the vision module is able to map a 45 metre long indoor loop and a 1.6 km long outdoor road loop, without any parameter or system adjustment between tests. The work serves as a promising pilot study into ground-based vision-only SLAM, with minimal geometric interpretation of the environment.
Resumo:
Purpose: To examine the influence of two different fast-start pacing strategies on performance and oxygen consumption (V˙O2) during cycle ergometer time trials lasting ∼5 min. Methods: Eight trained male cyclists performed four cycle ergometer time trials whereby the total work completed (113 ± 11.5 kJ; mean ± SD) was identical to the better of two 5-min self-paced familiarization trials. During the performance trials, initial power output was manipulated to induce either an all-out or a fast start. Power output during the first 60 s of the fast-start trial was maintained at 471.0 ± 48.0 W, whereas the all-out start approximated a maximal starting effort for the first 15 s (mean power: 753.6 ± 76.5 W) followed by 45 s at a constant power output (376.8 ± 38.5 W). Irrespective of starting strategy, power output was controlled so that participants would complete the first quarter of the trial (28.3 ± 2.9 kJ) in 60 s. Participants performed two trials using each condition, with their fastest time trial compared. Results: Performance time was significantly faster when cyclists adopted the all-out start (4 min 48 s ± 8 s) compared with the fast start (4 min 51 s ± 8 s; P < 0.05). The first-quarter V˙O2 during the all-out start trial (3.4 ± 0.4 L·min-1) was significantly higher than during the fast-start trial (3.1 ± 0.4 L·min-1; P < 0.05). After removal of an outlier, the percentage increase in first-quarter V˙O2 was significantly correlated (r = -0.86, P < 0.05) with the relative difference in finishing time. Conclusions: An all-out start produces superior middle distance cycling performance when compared with a fast start. The improvement in performance may be due to a faster V˙O2 response rather than time saved due to a rapid acceleration.
Resumo:
This paper investigates the use of the FAB-MAP appearance-only SLAM algorithm as a method for performing visual data association for RatSLAM, a semi-metric full SLAM system. While both systems have shown the ability to map large (60-70km) outdoor locations of approximately the same scale, for either larger areas or across longer time periods both algorithms encounter difficulties with false positive matches. By combining these algorithms using a mapping between appearance and pose space, both false positives and false negatives generated by FAB-MAP are significantly reduced during outdoor mapping using a forward-facing camera. The hybrid FAB-MAP-RatSLAM system developed demonstrates the potential for successful SLAM over large periods of time.
Resumo:
Actuators with deliberately added compliant elements in the transmission system are often described as improving the safety of the actuator at the detriment of the performance. We show that our variant of the Series Elastic Actuator topology, the Velocity Sourced Series Elastic Actuator, has well defined performance characteristics that make for improvements in safety and performance over conventional high impedance actuators. The improvement in performance was principally achieved by having tight velocity control of the DC motor that acts as the mechanical power source for the actuator. Results for performance are given for point to point transition times, while results for safety are based on empirical assessment of the Head Injury Criterion during collisions.
Resumo:
Acoustically, car cabins are extremely noisy and as a consequence audio-only, in-car voice recognition systems perform poorly. As the visual modality is immune to acoustic noise, using the visual lip information from the driver is seen as a viable strategy in circumventing this problem by using audio visual automatic speech recognition (AVASR). However, implementing AVASR requires a system being able to accurately locate and track the drivers face and lip area in real-time. In this paper we present such an approach using the Viola-Jones algorithm. Using the AVICAR [1] in-car database, we show that the Viola- Jones approach is a suitable method of locating and tracking the driver’s lips despite the visual variability of illumination and head pose for audio-visual speech recognition system.
Resumo:
This paper presents a vision-based method of vehicle localisation that has been developed and tested on a large forklift type robotic vehicle which operates in a mainly outdoor industrial setting. The localiser uses a sparse 3D edgemap of the environment and a particle filter to estimate the pose of the vehicle. The vehicle operates in dynamic and non-uniform outdoor lighting conditions, an issue that is addressed by using knowledge of the scene to intelligently adjust the camera exposure and hence improve the quality of the information in the image. Results from the industrial vehicle are shown and compared to another laser-based localiser which acts as a ground truth. An improved likelihood metric, using peredge calculation, is presented and has shown to be 40% more accurate in estimating rotation. Visual localization results from the vehicle driving an arbitrary 1.5km path during a bright sunny period show an average position error of 0.44m and rotation error of 0.62deg.