979 resultados para variational mean-field method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a new parameter to investigate replica symmetry breaking transitions using finite-size scaling methods. Based on exact equalities initially derived by F. Guerra this parameter is a direct check of the self-averaging character of the spin-glass order parameter. This new parameter can be used to study models with time reversal symmetry but its greatest interest lies in models where this symmetry is absent. We apply the method to long-range and short-range Ising spin-glasses with and without a magnetic field as well as short-range multispin interaction spin-glasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtain the exact analytical expression, up to a quadrature, for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise from a region (0,L) in space. We obtain a completely explicit expression for T(x,0) and discuss the dependence of T(x,v) as a function of the size L of the region. We develop a new method that may be used to solve other exit time problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We critically discuss relaxation experiments in magnetic systems that can be characterized in terms of an energy barrier distribution, showing that proper normalization of the relaxation data is needed whenever curves corresponding to different temperatures are to be compared. We show how these normalization factors can be obtained from experimental data by using the Tln (t/t0) scaling method without making any assumptions about the nature of the energy barrier distribution. The validity of the procedure is tested using a ferrofluid of Fe3O4 particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results ofLRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured loaddisplacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Previous studies of the visual outcome in bilateral non-arteritic anterior ischemic optic neuropathy (NAION) have yielded conflicting results, specifically regarding congruity between fellow eyes. Prior studies have used measures of acuity and computerized perimetry but none has compared Goldmann visual field outcomes between fellow eyes. In order to better define the concordance of visual loss in this condition, we reviewed our cases of bilateral sequential NAION, including measures of visual acuity, pupillary function and both pattern and severity of visual field loss.Methods: We performed a retrospective chart review of 102 patients with a diagnosis of bilateral sequential NAION. Of the 102 patients, 86 were included in the study for analysis of final visual outcome between the affected eyes. Visual function was assessed using visual acuity, Goldmann visual fields, color vision and RAPD. A quantitative total visual field score and score per quadrant was analyzed for each eye using the numerical Goldmann visual field scoring method previously described by Esterman and colleagues. Based upon these scores, we calculated the total deviation and pattern deviation between fellow eyes and between eyes of different patients. Statistical significance was determined using nonparametric tests.Results: A statistically significant correlation was found between fellow eyes for multiple parameters, including logMAR visual acuity (P = 0.0101), global visual field (P = 0.0001), superior visual field (P = 0.0001), and inferior visual field (P = 0.0001). In addition, the mean deviation of both total (P = 0.0000000007) and pattern (P = 0.000000004) deviation analyses was significantly less between fellow eyes ("intra"-eyes) than between eyes of different patients ("inter"-eyes).Conclusions: Visual function between fellow eyes showed a fair to moderate correlation that was statistically significant. The pattern of vision loss was also more similar in fellow eyes than between eyes of different patients. These results may help allow better prediction of visual outcome for the second eye in patients with NAION. These findings may also be useful for evaluating efficacy of therapeutic interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fréedericksz transition under twist deformation in a nematic layer is discussed when the magnetic field has a random component. A dynamical model which includes the thermal fluctuations of the system is presented. The randomness of the field produces a shift of the instability point. Beyond this instability point the time constant characteristic of the approach to the stationary stable state decreases because of the field fluctuations. The opposite happens for fields smaller than the critical one. The decay time of an unstable state, calculated as a mean first-passage time, is also decreased by the field fluctuations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Multiscale Finite Volume (MsFV) method has been developed to efficiently solve reservoir-scale problems while conserving fine-scale details. The method employs two grid levels: a fine grid and a coarse grid. The latter is used to calculate a coarse solution to the original problem, which is interpolated to the fine mesh. The coarse system is constructed from the fine-scale problem using restriction and prolongation operators that are obtained by introducing appropriate localization assumptions. Through a successive reconstruction step, the MsFV method is able to provide an approximate, but fully conservative fine-scale velocity field. For very large problems (e.g. one billion cell model), a two-level algorithm can remain computational expensive. Depending on the upscaling factor, the computational expense comes either from the costs associated with the solution of the coarse problem or from the construction of the local interpolators (basis functions). To ensure numerical efficiency in the former case, the MsFV concept can be reapplied to the coarse problem, leading to a new, coarser level of discretization. One challenge in the use of a multilevel MsFV technique is to find an efficient reconstruction step to obtain a conservative fine-scale velocity field. In this work, we introduce a three-level Multiscale Finite Volume method (MlMsFV) and give a detailed description of the reconstruction step. Complexity analyses of the original MsFV method and the new MlMsFV method are discussed, and their performances in terms of accuracy and efficiency are compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report presents the results of work zone field data analyzed on interstate highways in Missouri to determine the mean breakdown and queue-discharge flow rates as measures of capacity. Several days of traffic data collected at a work zone near Pacific, Missouri with a speed limit of 50 mph were analyzed in both the eastbound and westbound directions. As a result, a total of eleven breakdown events were identified using average speed profiles. The traffic flows prior to and after the onset of congestion were studied. Breakdown flow rates ranged between 1194 to 1404 vphpl, with an average of 1295 vphpl, and a mean queue discharge rate of 1072 vphpl was determined. Mean queue discharge, as used by the Highway Capacity Manual 2000 (HCM), in terms of pcphpl was found to be 1199, well below the HCM’s average capacity of 1600 pcphpl. This reduced capacity found at the site is attributable mainly to narrower lane width and higher percentage of heavy vehicles, around 25%, in the traffic stream. The difference found between mean breakdown flow (1295 vphpl) and queue-discharge flow (1072 vphpl) has been observed widely, and is due to reduced traffic flow once traffic breaks down and queues start to form. The Missouri DOT currently uses a spreadsheet for work zone planning applications that assumes the same values of breakdown and mean queue discharge flow rates. This study proposes that breakdown flow rates should be used to forecast the onset of congestion, whereas mean queue discharge flow rates should be used to estimate delays under congested conditions. Hence, it is recommended that the spreadsheet be refined accordingly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improving safety at nighttime work zones is important because of the extra visibility concerns. The deployment of sequential lights is an innovative method for improving driver recognition of lane closures and work zone tapers. Sequential lights are wireless warning lights that flash in a sequence to clearly delineate the taper at work zones. The effectiveness of sequential lights was investigated using controlled field studies. Traffic parameters were collected at the same field site with and without the deployment of sequential lights. Three surrogate performance measures were used to determine the impact of sequential lights on safety. These measures were the speeds of approaching vehicles, the number of late taper merges and the locations where vehicles merged into open lane from the closed lane. In addition, an economic analysis was conducted to monetize the benefits and costs of deploying sequential lights at nighttime work zones. The results of this study indicates that sequential warning lights had a net positive effect in reducing the speeds of approaching vehicles, enhancing driver compliance, and preventing passenger cars, trucks and vehicles at rural work zones from late taper merges. Statistically significant decreases of 2.21 mph mean speed and 1 mph 85% speed resulted with sequential lights. The shift in the cumulative speed distributions to the left (i.e. speed decrease) was also found to be statistically significant using the Mann-Whitney and Kolmogorov-Smirnov tests. But a statistically significant increase of 0.91 mph in the speed standard deviation also resulted with sequential lights. With sequential lights, the percentage of vehicles that merged earlier increased from 53.49% to 65.36%. A benefit-cost ratio of around 5 or 10 resulted from this analysis of Missouri nighttime work zones and historical crash data. The two different benefitcost ratios reflect two different ways of computing labor costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the elaboration of flood hazard maps. These maps reflect the areas prone to floods based on the effects of Hurricane Mitch in the Municipality of Jucuarán of El Salvador. Stream channels located in the coastal range in the SE of El Salvador flow into the Pacific Ocean and generate alluvial fans. Communities often inhabit these fans can be affected by floods. The geomorphology of these stream basins is associated with small areas, steep slopes, well developed regolite and extensive deforestation. These features play a key role in the generation of flash-floods. This zone lacks comprehensive rainfall data and gauging stations. The most detailed topographic maps are on a scale of 1:25 000. Given that the scale was not sufficiently detailed, we used aerial photographs enlarged to the scale of 1:8000. The effects of Hurricane Mitch mapped on these photographs were regarded as the reference event. Flood maps have a dual purpose (1) community emergency plans, (2) regional land use planning carried out by local authorities. The geomorphological method is based on mapping the geomorphological evidence (alluvial fans, preferential stream channels, erosion and sedimentation, man-made terraces). Following the interpretation of the photographs this information was validated on the field and complemented by eyewitness reports such as the height of water and flow typology. In addition, community workshops were organized to obtain information about the evolution and the impact of the phenomena. The superimposition of this information enables us to obtain a comprehensive geomorphological map. Another aim of the study was the calculation of the peak discharge using the Manning and the paleohydraulic methods and estimates based on geomorphologic criterion. The results were compared with those obtained using the rational method. Significant differences in the order of magnitude of the calculated discharges were noted. The rational method underestimated the results owing to short and discontinuous periods of rainfall data with the result that probabilistic equations cannot be applied. The Manning method yields a wide range of results because of its dependence on the roughness coefficient. The paleohydraulic method yielded higher values than the rational and Manning methods. However, it should be pointed out that it is possible that bigger boulders could have been moved had they existed. These discharge values are lower than those obtained by the geomorphological estimates, i.e. much closer to reality. The flood hazard maps were derived from the comprehensive geomorphological map. Three categories of hazard were established (very high, high and moderate) using flood energy, water height and velocity flow deduced from geomorphological and eyewitness reports.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method is used to estimate the volumes of sediments of glacial valleys. This method is based on the concept of sloping local base level and requires only a digital terrain model and the limits of the alluvial valleys as input data. The bedrock surface of the glacial valley is estimated by a progressive excavation of the digital elevation model (DEM) of the filled valley area. This is performed using an iterative routine that replaces the altitude of a point of the DEM by the mean value of its neighbors minus a fixed value. The result is a curved surface, quadratic in 2D. The bedrock surface of the Rhone Valley in Switzerland was estimated by this method using the free digital terrain model Shuttle Radar Topography Mission (SRTM) (~92 m resolution). The results obtained are in good agreement with the previous estimations based on seismic profiles and gravimetric modeling, with the exceptions of some particular locations. The results from the present method and those from the seismic interpretation are slightly different from the results of the gravimetric data. This discrepancy may result from the presence of large buried landslides in the bottom of the Rhone Valley.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Removal of ice from roads is of the more challenging task in winter highway maintenance. The best mechanical method is to use a truck with underbody plow blade, but such equipment is not available to all agencies charged with winter maintenance operations. While counties and cities often use motor graders to scrape ice, it would be of great benefit if front mounted plows could be used effectively for ice removal. To reveal and understand the factors that influence the performance of these plows, measurement of the forces experienced by the plow blades during ice scraping is desirable. This study explores the possibility of using accelerometers to determine the forces on a front-mounted plow when scraping ice. The plow was modeled by using a dynamic approach. The forces on the plow were to be determined by the measurement of the accelerations of the plow. Field tests were conducted using an "as is" front-mounted plow instrumented with accelerometers. The results of the field tests indicate that in terms of ice removal, the front-mounted plow is not favorable equipment. The major problem in this study is that the front mounted plow was not able to cut ice, and therefore experienced no significant scraping forces. However, the use of accelerometers seems to be promising for analyzing the vibration problems of the front-mounted plow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes the field application of the tilt sensing method for monitoring movement of the Black Hawk and Karl King Bridges. The study objectives were: to design a data acquisition system for tilt sensing equipment utilizing a telephone telemetry system; to monitor possible movement of the main span pier, Pier No. 2, on the Black Hawk Bridge in Lansing and the possible long-term movement of Pier No. 4 on the Karl King Bridge in Fort Dodge; and to assess the feasibility, reliability, and accuracy of the instrumentation system used in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.