930 resultados para ultrasound


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two ultrasound survey methods were used to determine the presence and activity patterns of New Zealand long-tailed bats (Chalinolobus tuberculatus) in the city of Hamilton. First, 13 monthly surveys conducted at 18 green spaces found C. tuberculatus in only one urban forest reserve, Hammond Bush, where they were found consistently throughout the year. Bat activity was strongly related to temperature. Second, twice-yearly citywide surveys conducted over 2 years determined the distribution and habitat associations of C. tuberculatus. Bats were found only in the southern part of the city and were strongly associated with the Waikato River. Bat activity was negatively correlated with housing and street light density and positively correlated with topographical complexity. In Hamilton, topographical complexity indicates the presence of gullies. Gullies probably provide foraging and roosting opportunities and connect the river to distant forest patches. These results suggest that urban habitats can be useful for bats if gullies can link these to distant habitat fragments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasonic vocalisations (frequencies > 20 kHz) have been extensively studied in the context of echolocation by bats and other mammals (Sales & Pye 1974; Wilson & Hare 2004). Ultrasonic calls have also been recorded from birds, including the blue-throated hummingbird ( Lampornis clemenciae ) (Pytte et al. 2004), where it was first thought that individuals made use of high pitch calls to avoid masking by background noise in a visually obscured environment. Similarly, city-dwelling great tits ( Parus major ) use song with a higher minimum frequency (although not ultrasonic) compared to woodland birds to communicate with conspecifics to avoid the predominantly low-frequency background noise in the city (Slabbekorn & Peet 2003). The theory that birds use ultrasound to avoid noise masking was discarded when it was discovered that there was no corresponding auditory brainstem response (i.e. sensory perception) to the ultrasonic calls in the hummingbirds producing those calls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automated remote ultrasound detectors allow large amounts of data on bat presence and activity to be collected. Processing of such data involves identifying bat species from their echolocation calls. Automated species identification has the potential to provide more consistent, predictable, and potentially higher levels of accuracy than identification by humans. In contrast, identification by humans permits flexibility and intelligence in identification, as well as the incorporation of features and patterns that may be difficult to quantify. We compared humans with artificial neural networks (ANNs) in their ability to classify short recordings of bat echolocation calls of variable signal to noise ratios; these sequences are typical of those obtained from remote automated recording systems that are often used in large-scale ecological studies. We presented 45 recordings (1–4 calls) produced by known species of bats to ANNs and to 26 human participants with 1 month to 23 years of experience in acoustic identification of bats. Humans correctly classified 86% of recordings to genus and 56% to species; ANNs correctly identified 92% and 62%, respectively. There was no significant difference between the performance of ANNs and that of humans, but ANNs performed better than about 75% of humans. There was little relationship between the experience of the human participants and their classification rate. However, humans with <1 year of experience performed worse than others. Currently, identification of bat echolocation calls by humans is suitable for ecological research, after careful consideration of biases. However, improvements to ANNs and the data that they are trained on may in future increase their performance to beyond those demonstrated by humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Female greater wax moths Galleria mellonella display by wing fanning in response to bursts of ultrasonic calls produced by males. The temporal and spectral characteristics of these calls show some similarities with the echolocation calls of bats that emit frequency-modulated (FM) signals. Female G. mellonella therefore need to distinguish between the attractive signals of male conspecifics, which may lead to mating opportunities, and similar sounds made by predatory bats. We therefore predicted that (1) females would display in response to playbacks of male calls; (2) females would not display in response to playbacks of the calls of echolocating bats (we used the calls of Daubenton's bat Myotis daubentonii as representative of a typical FM echolocating bat); and (3) when presented with male calls and bat calls during the same time block, females would display more when perceived predation risk was lower. We manipulated predation risk in two ways. First, we varied the intensity of bat calls to represent a nearby (high risk) or distant (low risk) bat. Second, we played back calls of bats searching for prey (low risk) and attacking prey (high risk). All predictions were supported, suggesting that female G. mellonella are able to distinguish conspecific male mating calls from bat calls, and that they modify display rate in relation to predation risk. The mechanism (s) by which the moths separate the calls of bat and moth must involve temporal cues. Bat and moth signals differ considerably in duration, and differences in duration could be encoded by the moth's nervous system and used in discrimination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives Currently, there are no studies combining electromyography (EMG) and sonography to estimate the absolute and relative strength values of erector spinae (ES) muscles in healthy individuals. The purpose of this study was to establish whether the maximum voluntary contraction (MVC) of the ES during isometric contractions could be predicted from the changes in surface EMG as well as in fiber pennation and thickness as measured by sonography. Methods Thirty healthy adults performed 3 isometric extensions at 45° from the vertical to calculate the MVC force. Contractions at 33% and 100% of the MVC force were then used during sonographic and EMG recordings. These measurements were used to observe the architecture and function of the muscles during contraction. Statistical analysis was performed using bivariate regression and regression equations. Results The slope for each regression equation was statistically significant (P < .001) with R2 values of 0.837 and 0.986 for the right and left ES, respectively. The standard error estimate between the sonographic measurements and the regression-estimated pennation angles for the right and left ES were 0.10 and 0.02, respectively. Conclusions Erector spinae muscle activation can be predicted from the changes in fiber pennation during isometric contractions at 33% and 100% of the MVC force. These findings could be essential for developing a regression equation that could estimate the level of muscle activation from changes in the muscle architecture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design Cross-sectional study. Objectives To compare erector spinae (ES) muscle fatigue between chronic non-specific lower back pain (CNLBP) sufferers and healthy subjects from a biomechanical perspective during fatiguing isometric lumbar extensions. Background Paraspinal muscle maximal contraction and fatigue are used as a functional predictor for disabilities. The simplest method to determine muscle fatigue is by evaluating the evolution during specific contractions, such as isometric contractions. There are no studies that evaluate the evolution of the ES muscle during fatiguing isometric lumbar extensions and analyse functional and architectural variables. Methods In a pre-calibrated system, participants performed a maximal isometric extension of the lumbar spine for 5 and 30 seconds. Functional variables (torque and muscle activation) and architecture (pennation angle and muscle thickness) were measured using a load cell, surface electromyography and ultrasound, respectively. The results were normalised and a reliability study of the ultrasound measurement was made. Results: The ultrasound measurements were highly reliable, with Cronbach’s alpha values ranging from 0.951 0.981. All measured variables shown significant differences before and after fatiguing isometric lumbar extension. Conclusion During a lumbar isometric extension test, architecture and functional variables of the ES muscle could be analised using ultrasound, surface EMG and load cell. In adition, during an endurance test, ES muscle suffers an acute effect on architectural and functional variables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study analysed whether a significant relationship exists between the torque and muscle thickness and pennation angle of the erector spinae muscle during a maximal isometric lumbar extension with the lumbar spine in neutral position. This was a cross-sectional study in which 46 healthy adults performed three repetitions for 5 s of maximal isometric lumbar extension with rests of 90 s. During the lumbar extensions, bilateral ultrasound images of the erector spinae muscle (to measure pennation angle and muscle thickness) and torque were acquired. Reliability test analysis calculating the internal consistency (Cronbach's alpha) of the measure, correlation between pennation angle, muscle thickness and torque extensions were examined. Through a linear regression the contribution of each independent variable (muscle thickness and pennation angle) to the variation of the dependent variable (torque) was calculated. The results of the reliability test were: 0.976–0.979 (pennation angle), 0.980–0.980 (muscle thickness) and 0.994 (torque). The results show that pennation angle and muscle thickness were significantly related to each other with a range between 0.295 and 0.762. In addition, multiple regression analysis showed that the two variables considered in this study explained 68% of the variance in the torque. Pennation angle and muscle thickness have a moderate impact on the variance exerted on the torque during a maximal isometric lumbar extension with the lumbar spine in neutral position.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In aerosol research, a common approach for the collection of particulate matter (PM) is the use of filters in order to obtain sufficient material to undertake analysis. For subsequent chemical and toxicological analyses, in most of cases the PM needs to be extracted from the filters. Sonication is commonly used to most efficiently extract the PM from the filters. Extraction protocols generally involve 10 - 60 min of sonication. The energy of ultrasonic waves causes the formation and collapse of cavitation bubbles in the solution. Inside the collapsing cavities the localised temperatures and pressures can reach extraordinary values. Although fleeting, such conditions can lead to pyrolysis of the molecules present inside the cavitation bubbles (gases dissolved in the liquid and solvent vapours), which results in the production of free radicals and the generation of new compounds formed by reactions with these free radicals. For example, simple sonication of pure water will result in the formation of detectable levels of hydroxyl radicals. As hydroxyl radicals are recognised as playing key roles as oxidants in the atmosphere the extraction of PM from filters using sonication is therefore problematic. Sonication can result in significant chemical and physical changes to PM through thermal degradation and other reactions. In this article, an overview of sonication technique as used in aerosol research is provided, the capacity for radical generation under these conditions is described and an analysis is given of the impact of sonication-derived free radicals on three molecular probes commonly used by researchers in this field to detect Reactive Oxygen Species in PM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Close attention to technical quality or image optimization in transthoracic echocardiography (TTE) is important for the acquisition of high-quality diagnostic images and to ensure that measurements are accurately performed. For this purpose, the echocardiographer must be familiar with all the controls on the ultrasound machine that can be manipulated to optimize the two-dimensional (2D) images, color Doppler images, and spectral Doppler traces...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Transthoracic echocardiography (TTE) during extra corporeal membrane oxygenation (ECMO) is important but can be technically challenging. Contrast-specific TTE can improve imaging in suboptimal studies. These contrast microspheres are hydrodynamically labile structures. This study assessed the feasibility of contrast echocardiography (CE) during venovenous (VV) ECMO in a validated ovine model. Method: Twenty-four sheep were commenced on VV ECMO. Parasternal long-axis (Plax) and short-axis (Psax) views were obtained pre- and postcontrast while on VV ECMO. Endocardial definition scores (EDS) per segment were graded: 1 = good, 2 = suboptimal 3 = not seen. Endocardial border definition score index (EBDSI) was calculated for each view. Endocardial length (EL) in the Plax view for the left ventricle (LV) and right ventricle (RV) was measured. Results: Summation EDS data for the LV and RV for unenhanced TTE (UE) versus CE TTE imaging: EDS 1 = 289 versus 346, EDS 2 = 38 versus 10, EDS 3 = 33 versus 4, respectively. Wilcoxon matched-pairs rank-sign tests showed a significant ranking difference (improvement) pre- and postcontrast for the LV (P < 0.0001), RV (P < 0.0001) and combined ventricular data (P < 0.0001). EBDSI for CE TTE was significantly lower than UE TTE for the LV (1.05 ± 0.17 vs. 1.22 ± 0.38, P = 0.0004) and RV (1.06 ± 0.22 vs. 1.42 ± 0.47, P = 0.0.0006) respectively. Visualized EL was significantly longer in CE versus UE for both the LV (58.6 ± 11.0 mm vs. 47.4 ± 11.7 mm, P < 0.0001) and the RV (52.3 ± 8.6 mm vs. 36.0 ± 13.1 mm, P < 0.0001), respectively. Conclusions: Despite exposure to destructive hydrodynamic forces, CE is a feasible technique in an ovine ECMO model. CE results in significantly improved EDS and increased EL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The insecure supply of fossil fuel coerces the scientific society to keep a vision to boost investments in the renewable energy sector. Among the many renewable fuels currently available around the world, biodiesel offers an immediate impact in our energy. In fact, a huge interest in related research indicates a promising future for the biodiesel technology. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The number of well-defined catalyst complexes that are able to catalyze transesterification reactions efficiently has been significantly expanded in recent years. The activity of catalysts, specifically in application to solid acid/base catalyst in transesterification reaction depends on their structure, strength of basicity/acidity, surface area as well as the stability of catalyst. There are various process intensification technologies based on the use of alternate energy sources such as ultrasound and microwave. The latest advances in research and development related to biodiesel production is represented by non-catalytic supercritical method and focussed exclusively on these processes as forthcoming transesterification processes. The latest developments in this field featuring highly active catalyst complexes are outlined in this review. The knowledge of more extensive research on advances in biofuels will allow a deeper insight into the mechanism of these technologies toward meeting the critical energy challenges in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aim. Mesenchymal stromal cells (MSCs) have been utilised in many clinical trials as an experimental treatment in numerous clinical settings. Bone marrow remains the traditional source tissue for MSCs but is relatively hard to access in large volumes. Alternatively, MSCs may be derived from other tissues including the placenta and adipose tissue. In an initial study no obvious differences in parameters such as cell surface phenotype, chemokine receptor display, mesodermal differentiation capacity or immunosuppressive ability, were detected when we compared human marrow derived- MSCs to human placenta-derived MSCs. The aim of this study was to establish and evaluate a protocol and related processes for preparation placenta-derived MSCs for early phase clinical trials. Methods. A full-term placenta was taken after delivery of the baby as a source of MSCs. Isolation, seeding, incubation, cryopreservation of human placentaderived MSCs and used production release criteria were in accordance with the complex regulatory requirements applicable to Code of Good Manufacturing Practice manufacturing of ex vivo expanded cells. Results. We established and evaluated instructions for MSCs preparation protocol and gave an overview of the three clinical areas application. In the first trial, MSCs were co-transplanted iv to patient receiving an allogeneic cord blood transplant as therapy for treatmentrefractory acute myeloid leukemia. In the second trial, MSCs were administered iv in the treatment of idiopathic pulmonary fibrosis and without serious adverse effects. In the third trial, MSCs were injected directly into the site of tendon damage using ultrasound guidance in the treatment of chronic refractory tendinopathy. Conclusion. Clinical trials using both allogeneic and autologous cells demonstrated MSCs to be safe. A described protocol for human placenta-derived MSCs is appropriate for use in a clinical setting, relatively inexpensive and can be relatively easily adjusted to a different set of regulatory requirements, as applicable to early phase clinical trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n 5 14 260), velocity of sound (VOS; n 5 15 514) and BMD (n 5 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n 5 11 452) and new genotyping in 15 cohorts (de novo n 5 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 3 108) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 3 1014). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 3 106 also had the expected direction of association with any fracture (P < 0.05), including threeSNPswithP < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, thisGWAstudy reveals the effect of several genescommon to central DXA-derivedBMDand heel ultrasound/DXAmeasures and points to anewgenetic locus with potential implications for better understanding of osteoporosis pathophysiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To determine i) the architectural adaptations of the biceps femoris long head (BFlf) following concentric or eccentric strength training interventions; ii) the time course of adaptation during training and detraining. Methods Participants in this randomized controlled trial (control [n=28], concentric training group [n=14], eccentric training group [n=14], males) completed a 4-week control period, followed by 6 weeks of either concentric- or eccentric-only knee flexor training on an isokinetic dynamometer and finished with 28 days of detraining. Architectural characteristics of BFlf were assessed at rest and during graded isometric contractions utilizing two-dimensional ultrasonography at 28 days pre-baseline, baseline, days 14, 21 and 42 of the intervention and then again following 28 days of detraining. Results BFlf fascicle length was significantly longer in the eccentric training group (p<0.05, d range: 2.65 to 2.98) and shorter in the concentric training group (p<0.05, d range: -1.62 to -0.96) after 42 days of training compared to baseline at all isometric contraction intensities. Following the 28-day detraining period, BFlf fascicle length was significantly reduced in the eccentric training group at all contraction intensities compared to the end of the intervention (p<0.05, d range: -1.73 to -1.55). There was no significant change in fascicle length of the concentric training group following the detraining period. Conclusions These results provide evidence that short term resistance training can lead to architectural alterations in the BFlf. In addition, the eccentric training-induced lengthening of BFlf fascicle length was reversed and returned to baseline values following 28 days of detraining. The contraction mode specific adaptations in this study may have implications for injury prevention and rehabilitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arterial mechanical property may be a potential variable for risk stratification. Large artery and central arterial compliance have been shown not only to correlate well with overall cardiovascular outcome in large epidemiological studies [1, 2] but also to correlate with coronary atherosclerotic burden as measured by conventional angiography [3]. Until recently, real-time B-mode ultrasound combined with simultaneous blood pressure measurements have been used to assess large artery compliance [4]. These techniques have an excellent temporal resolution but are unable to provide adequate spatial resolution to determine changes in vessel area as opposed to diameter and make the assumption that the vessel is perfectly round. Attempts to use MR imaging to measure large artery compliance have been published previously [5]. However, they have not utilised simultaneous blood pressure measurements during sequence acquisition. We report a technique using regular and simultaneous blood pressure measurement during 2 dimensional phase contrast magnetic resonance imaging 2DPC-MRI to determine local carotid compliance.