937 resultados para two-part tariff
Resumo:
In tetrapods, only one gene encoding a somatostatin precursor has been identified so far. The present study reports the characterization of the cDNA clones that encode two distinct somatostatin precursors in the brain of the frog Rana ridibunda. The cDNAs were isolated by using degenerate oligonucleotides based on the sequence of the central region of somatostatin to screen a frog brain cDNA library. One of the cDNAs encodes a 115-amino acid protein (prepro-somatostatin-14; PSS1) that exhibits a high degree of structural similarity with the mammalian somatostatin precursor. The other cDNA encodes a 103-amino acid protein (prepro-[Pro2, Met13]somatostatin-14; PSS2) that contains the sequence of the somatostatin analog (peptide SS2) at its C terminus, but does not exhibit appreciable sequence similarity with PSS1 in the remaining region. In situ hybridization studies indicate differential expression of the PSS1 and PSS2 genes in the septum, the lateral part of the pallium, the amygdaloid complex, the posterior nuclei of the thalamus, the ventral hypothalamic nucleus, the torus semicircularis and the optic tectum. The somatostatin variant SS2 was significantly more potent (4-6 fold) than somatostatin itself in displacing [125I-Tyr0, D-Trp8] somatostatin-14 from its specific binding sites. The present study indicates that the two somatostatin variants could exert different functions in the frog brain and pituitary. These data also suggest that distinct genes encoding somatostatin variants may be expressed in the brain of other tetrapods.
Resumo:
Root hairs as specialized epidermal cells represent part of the outermost interface between a plant and its soil environment. They make up to 70% of the root surface and, therefore, are likely to contribute significantly to nutrient uptake. To study uptake systems for mineral nitrogen, three genes homologous to Arabidopsis nitrate and ammonium transporters (AtNrt1 and AtAmt1) were isolated from a root hair-specific tomato cDNA library. Accumulation of LeNrt1-1, LeNrt1-2, and LeAmt1 transcripts was root-specific, with no detectable transcripts in stems or leaves. Expression was root cell type-specific and regulated by nitrogen availability. LeNrt1-2 mRNA accumulation was restricted to root hairs that had been exposed to nitrate. In contrast, LeNrt1-1 transcripts were detected in root hairs as well as other root tissues under all nitrogen treatments applied. Analogous to LeNrt1-1, the gene LeAmt1 was expressed under all nitrogen conditions tested, and root hair-specific mRNA accumulation was highest following exposure to ammonium. Expression of LeAMT1 in an ammonium uptake-deficient yeast strain restored growth on low ammonium medium, confirming its involvement in ammonium transport. Root hair specificity and characteristics of substrate regulation suggest an important role of the three genes in uptake of mineral nitrogen.
Resumo:
Monoallelic expression in diploid mammalian cells appears to be a widespread phenomenon, with the most studied examples being X-chromosome inactivation in eutherian female cells and genomic imprinting in the mouse and human. Silencing and methylation of certain sites on one of the two alleles in somatic cells is specific with respect to parental source for imprinted genes and random for X-linked genes. We report here evidence indicating that: (i) differential methylation patterns of imprinted genes are not simply copied from the gametes, but rather established gradually after fertilization; (ii) very similar methylation patterns are observed for diploid, tetraploid, parthenogenic, and androgenic preimplantation mouse embryos, as well as parthenogenic and androgenic mouse embryonic stem cells; (iii) haploid parthenogenic embryos do not show methylation adjustment as seen in diploid or tetraploid embryos, but rather retain the maternal pattern. These observations suggest that differential methylation in imprinted genes is achieved by a dynamic process that senses gene dosage and adjusts methylation similar to X-chromosome inactivation.
Resumo:
RNA-RNA interactions govern a number of biological processes. Several RNAs, including natural sense and antisense RNAs, interact by means of a two-step mechanism: recognition is mediated by a loop-loop complex, which is then stabilized by formation of an extended intermolecular duplex. It was proposed that the same mechanism holds for dimerization of the genomic RNA of human immunodeficiency virus type 1 (HIV-1), an event thought to control crucial steps of HIV-1 replication. However, whereas interaction between the partially self-complementary loop of the dimerization initiation site (DIS) of each monomer is well established, formation of the extended duplex remained speculative. Here we first show that in vitro dimerization of HIV-1 RNA is a specific process, not resulting from simple annealing of denatured molecules. Next we used mutants of the DIS to test the formation of the extended duplex. Four pairs of transcomplementary mutants were designed in such a way that all pairs can form the loop-loop "kissing" complex, but only two of them can potentially form the extended duplex. All pairs of mutants form heterodimers whose thermal stability, dissociation constant, and dynamics were analyzed. Taken together, our results indicate that, in contrast with the interactions between natural sense and antisense RNAs, no extended duplex is formed during dimerization of HIV-1 RNA. We also showed that 55-mer sense RNAs containing the DIS are able to interfere with the preformed HIV-1 RNA dimer.
Resumo:
In recent years, it has become apparent that salicylic acid (SA) plays an important role in plant defense responses to pathogen attack. Previous studies have suggested that one of SA's mechanisms of action is the inhibition of catalase, resulting in elevated levels of H2O2, which activate defense-related genes. Here we demonstrate that SA also inhibits ascorbate peroxoidase (APX), the other key enzyme for scavenging H2O2. The synthetic inducer of defense responses, 2,6-dichloroisonicotinic acid (INA), was also found to be an effective inhibitor of APX. In the presence of 750 microM ascorbic acid (AsA), substrate-dependent IC50 values of 78 microM and 95 microM were obtained for SA and INA, respectively. Furthermore, the ability of SA analogues to block APX activity correlated with their ability to induce defense-related genes in tobacco and enhance resistance to tobacco mosaic virus. Inhibition of APX by SA appears to be reversible, thus differing from the time-dependent, irreversible inactivation by suicide substrates such as p-aminophenol. In contrast to APX, the guaiacol-utilizing peroxidases, which participate in the synthesis and crosslinking of cell wall components as part of the defense response, are not inhibited by SA or INA. The inhibition of both catalase and APX, but not guaiacol peroxidases, supports the hypothesis that SA-induced defense responses are mediated, in part, through elevated H2O2 levels or coupled perturbations of the cellular redox state.
Resumo:
N-Methyl-D-aspartate (NMDA) receptor-mediated neurotoxicity may depend, in part, on the generation of nitric oxide (NO.) and superoxide anion (O2.-), which react to form peroxynitrite (OONO-). This form of neurotoxicity is thought to contribute to a final common pathway of injury in a wide variety of acute and chronic neurologic disorders, including focal ischemia, trauma, epilepsy, Huntington disease, Alzheimer disease, amyotrophic lateral scelerosis, AIDS dementia, and other neurodegenerative diseases. Here, we report that exposure of cortical neurons to relatively short durations or low concentrations of NMDA, S-nitrosocysteine, or 3-morpholinosydnonimine, which generate low levels of peroxynitrite, induces a delayed form of neurotoxicity predominated by apoptotic features. Pretreatment with superoxide dismutase and catalase to scavenge O2.- partially prevents the apoptotic process triggered by S-nitrosocysteine or 3-morpholinosydnonimine. In contrast, intense exposure to high concentrations of NMDA or peroxynitrite induces necrotic cell damage characterized by acute swelling and lysis, which cannot be ameliorated by superoxide dismutase and catalase. Thus, depending on the intensity of the initial insult, NMDA or nitric oxide/superoxide can result in either apoptotic or necrotic neuronal cell damage.
Resumo:
When expressed as part of a glutathione S-transferase fusion protein the NH2-terminal domain of the lymphocyte cell adhesion molecule CD2 is shown to adopt two different folds. The immunoglobulin superfamily structure of the major (85%) monomeric component has previously been determined by both x-ray crystallography and NMR spectroscopy. We now describe the structure of a second, dimeric, form present in about 15% of recombinant CD2 molecules. After denaturation and refolding in the absence of the fusion partner, dimeric CD2 is converted to monomer, illustrating that the dimeric form represents a metastable folded state. The crystal structure of this dimeric form, refined to 2.0-A resolution, reveals two domains with overall similarity to the IgSF fold found in the monomer. However, in the dimer each domain is formed by the intercalation of two polypeptide chains. Hence each domain represents a distinct folding unit that can assemble in two different ways. In the dimer the two domains fold around a hydrophilic interface believed to mimic the cell adhesion interaction at the cell surface, and the formation of dimer can be regulated by mutating single residues at this interface. This unusual misfolded form of the protein, which appears to result from inter- rather than intramolecular interactions being favored by an intermediate structure formed during the folding process, illustrates that evolution of protein oligomers is possible from the sequence for a single protein domain.
Resumo:
The simple gas ethylene affects numerous physiological processes in the growth and development of higher plants. With the use of molecular genetic approaches, we are beginning to learn how plants perceive ethylene and how this signal is transduced. Components of ethylene signal transduction are defined by ethylene response mutants in Arabidopsis thaliana. The genes corresponding to two of these mutants, etr1 and etr1, have been cloned. The ETR1 gene encodes a homolog of two-component regulators that are known almost exclusively in prokaryotes. The two-component regulators in prokaryotes are involved in the perception and transduction of a wide range of environmental signals leading to adaptive responses. The CTR1 gene encodes a homolog of the Raf family of serine/threonine protein kinases. Raf is part of a mitogen-activated protein kinase cascade known to regulate cell growth and development in mammals, worms, and flies. The ethylene response pathway may, therefore, exemplify a conserved protein kinase cascade regulated by a two-component system. The dominance of all known mutant alleles of ETR1 may be due to either constitutive activation of the ETR1 protein or dominant interference of wild-type activity. The discovery of Arabidopsis genes encoding proteins related to ETR1 suggests that the failure to recover recessive etr1 mutant alleles may be due to the presence of redundant genes.
Resumo:
As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745–7300 Å) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1′ × 1′) covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an “ionization cone” are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first “ionization cone” of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 Å] and have very low excitation, log([OIII]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([OIII]λ5007/Hβ, [NII]λ6584/Hα, [SII]λ6717, 6731/Hα, [OI]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC 6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC 5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the “ionization cone” scenario, although ionization by pAGB stars cannot be ruled out. Further study of this object is needed to clarify the nature of its elongated gas structure.
Resumo:
We have observed a large spin splitting between "spin" +1 and -1 heavy-hole excitons, having unbalanced populations, in undoped GaAs/AlAs quantum wells in the absence of any external magnetic field. Time-resolved photoluminescence spectroscopy, under excitation with circularly polarized light, reveals that, for high excitonic density and short times after the pulsed excitation, the emission from majority excitons lies above that of minority ones. The amount of the splitting, which can be as large as 50% of the binding energy, increases with excitonic density and presents a time evolution closely connected with the degree of polarization of the luminescence. Our results are interpreted on the light of a recently developed model, which shows that, while intraexcitonic exchange interaction is responsible for the spin relaxation processes, exciton-exciton interaction produces a breaking of the spin degeneracy in two-dimensional semiconductors.
Resumo:
We present a theoretical analysis of a spin-dependent multicomponent condensate in two dimensions. The case of a condensate of resonantly photoexcited excitons having two different spin orientations is studied in detail. The energy and the chemical potentials of this system depend strongly on the spin polarization. When electrons and holes are located in two different planes, the condensate can be either totally spin polarized or spin unpolarized, a property that is measurable. The phase diagram in terms of the total density and electron-hole separation is discussed.
Resumo:
Little, if any, previous research has investigated the involvement of immigrants in sport coaching. This is the first of a series of two articles that focus on this issue. In this article, following a general literature review, structured retrospective interviews (n = 29) are used to construct a profile of immigrant youth sport coaches. Two distinct profiles were identified: (a) leisure-oriented coaches, who had not coached prior to immigration; and (b) career-oriented coaches, who had coached prior to immigration Statistically significant differences (p < .05) were found between groups relating to athletic experience, sport-related education, time between immigration and initiation of coaching, and coaching of their own children Separate pathways to coaching involvement after immigration were identified for both profiles.
Resumo:
Although research in the area of immigrants and their physical activity patterns has been steadily growing, there is still much to learn. The purpose of this study was to identify the barriers, facilitators and motivators facing recent Canadian immigrants as they relate to involvement in coaching youth sport. The quantitative information presented in the first article of this series served as a framework for conducting semi-structured qualitative interviews with 28 immigrant youth-sport coaches. Results of these interviews support the notion that there are two distinct groups of immigrant coaches - the ‘leisure-oriented coach’ (those without coaching occupational aspirations) and the ‘career-oriented coach’ (those with coaching occupational pursuits). Despite sharing several of the same barriers, facilitators and motivators, each group showed marked divergence from the other on a number of aspects in each of these three categories.
Resumo:
Twenty years after the split of Czechoslovakia, expert analysts from the Czech Republic, Slovakia and the UK shed light on the political geography of this part of Central Europe in an extended three-part Commentary. The end points in the Euro-Atlantic integration processes of the successor states may be similar, argue the authors, but the journeys have been very different. Recent experience would suggest that in terms of EU politics, the Slovaks will be rather passive whilst the Czechs might be a little more troublesome. On the domestic front, the political discourse and competition in both states will largely revolve around the question of competence and corruption.
Resumo:
On 30 March, Turkey’s ruling Justice and Development Party (AKP) scooped a significant victory in local elections, taking almost 44 percent of the vote despite accusations of corruption, undermining the rule of law, fundamental rights and freedoms. While there have been claims of election fraud and the main opposition party, the Republican People’s Party (CHP), has demanded recounts in several cities including Istanbul and Ankara, it is clear that even allowing for some level of fraud the win was substantial and more than most people expected. Prime Minister Recep Tayyip Erdoğan has reached a juncture. He has two choices: return to the path of democracy after a period of democratic back-sliding which included passing several controversial reforms such as a new internet law which led to the recent banning of Twitter and Youtube; or alternatively he can forge ahead with his much talked of revenge campaign against those he has accused of creating a “parallel state” and conspiring to remove him from power. Given that Erdoğan viewed this election as a referendum on his popularity and leadership there is a serious risk that he will do the latter; using the significant mandate given to him to do whatever he wants, including further cracking down on democracy.