928 resultados para two-Dimensional finite volume method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess the fetal lumbosacral spine by three-dimensional (3D) ultrasonography using volume contrast imaging (VCI) omni view method and compare reproducibility and agreement between three different measurement techniques: standard mouse, high definition mouse and pen-tablet. Methods: A comparative and prospective study with 40 pregnant women between 20 and 34+6 weeks was realized. 3D volume datasets of the fetal spine were acquired using a convex transabdominal transducer. Starting scan plane was the coronal section of fetal lumbosacral spine by VCI-C function. Omni view manual trace was selected and a parallel plane of fetal spine was drawn including interest region. Intraclass correlation coefficient (ICC) was used for reproducibility analysis. The relative difference between three used techniques was compared by chi-square test and Fischer test. Results: Pen-tablet showed better reliability (ICC = 0.987). In the relative proportion of differences, this was significantly higher for the pen-tablet (82.14%; p < 0.01). In paired comparison, the relative difference was significantly greater for the pen-tablet (p < 0.01). Conclusion: The pen-tablet showed to be the most reproductive and concordant method in the measurement of body vertebral area of fetal lumbosacral spine by 3D ultrasonography using the VCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, a strategy to model the behavior of fluids and their interaction with deformable bodies is proposed. The fluid domain is modeled by using the lattice Boltzmann method, thus analyzing the fluid dynamics by a mesoscopic point of view. It has been proved that the solution provided by this method is equivalent to solve the Navier-Stokes equations for an incompressible flow with a second-order accuracy. Slender elastic structures idealized through beam finite elements are used. Large displacements are accounted for by using the corotational formulation. Structural dynamics is computed by using the Time Discontinuous Galerkin method. Therefore, two different solution procedures are used, one for the fluid domain and the other for the structural part, respectively. These two solvers need to communicate and to transfer each other several information, i.e. stresses, velocities, displacements. In order to guarantee a continuous, effective, and mutual exchange of information, a coupling strategy, consisting of three different algorithms, has been developed and numerically tested. In particular, the effectiveness of the three algorithms is shown in terms of interface energy artificially produced by the approximate fulfilling of compatibility and equilibrium conditions at the fluid-structure interface. The proposed coupled approach is used in order to solve different fluid-structure interaction problems, i.e. cantilever beams immersed in a viscous fluid, the impact of the hull of the ship on the marine free-surface, blood flow in a deformable vessels, and even flapping wings simulating the take-off of a butterfly. The good results achieved in each application highlight the effectiveness of the proposed methodology and of the C++ developed software to successfully approach several two-dimensional fluid-structure interaction problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new simple method for two-dimensional determination of optical density of macular pigment xanthophyll (ODx) in clinical routine is based on a single blue-reflection fundus image. Individual different vignetting is corrected by a shading function. For its construction, nodes are automatically found in structureless image regions. The influence of stray light in elderly crystalline lenses is compensated by a correction function that depends on age. The reproducibility of parameters in a one-wavelength reflection method determined for three subjects (47, 61, and 78 years old) was: maxODx = 6.3%, meanODx = 4.6%, volume = 6%, and area = 6% already before stray-light correction. ODx was comparable in pseudophakic and in an eye with a crystalline lens of the same 11 subjects after stray-light correction. Significant correlation in ODx was found between the one-wavelength reflection method and the two-wavelength autofluorescence method for pseudophakic and cataract eyes of 19 patients suffering from dry age-related macular degeneration (AMD) (R(2) = 0.855). In pseudophakic eyes, maxODx was significantly lower for dry AMD (n = 45) (ODx = 0.491±0.102 ODU) than in eyes with healthy fundus (n = 22) (ODx = 0.615±0.103 ODU) (p = 0.000033). Also in eyes with crystalline lens, maxODx was lower in AMD (n = 125) (ODx = 0.610±0.093 ODU) than in healthy subjects (n = 45) (ODx = 0.674±0.098 ODU) (p = 0.00019). No dependence on age was found in the pseudophakic eyes both of healthy subjects and AMD patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the next few years, the medical industry will launch increasingly affordable three-dimensional (3D) vision systems for the operating room (OR). This study aimed to evaluate the effect of two-dimensional (2D) and 3D visualization on surgical skills and task performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximum principle is an important property of solutions to PDE. Correspondingly, it's of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO scheme, and then propose a new parametrized MPP high order finite difference(FD) WENO framework, which is generalized from the one solving hyperbolic conservation laws. A formal analysis is presented to show that a third order finite difference scheme with this parametrized MPP flux limiters maintains the third order accuracy without extra CFL constraint when the low order monotone flux is chosen appropriately. Numerical tests in both one and two dimensional cases are performed on the simulation of the incompressible Navier-Stokes equations in vorticity stream-function formulation and several other problems to show the effectiveness of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic threedimensional flows, which are inhomogeneous in two (and periodic in one) or all three spatial directions.1 The theory addresses flows developing in complex geometries, in which the parallel or weakly nonparallel basic flow approximation invoked by classic linear stability theory does not hold. As such, global linear theory is called to fill the gap in research into stability and transition in flows over or through complex geometries. Historically, global linear instability has been (and still is) concerned with solution of multi-dimensional eigenvalue problems; the maturing of non-modal linear instability ideas in simple parallel flows during the last decade of last century2–4 has given rise to investigation of transient growth scenarios in an ever increasing variety of complex flows. After a brief exposition of the theory, connections are sought with established approaches for structure identification in flows, such as the proper orthogonal decomposition and topology theory in the laminar regime and the open areas for future research, mainly concerning turbulent and three-dimensional flows, are highlighted. Recent results obtained in our group are reported in both the time-stepping and the matrix-forming approaches to global linear theory. In the first context, progress has been made in implementing a Jacobian-Free Newton Krylov method into a standard finite-volume aerodynamic code, such that global linear instability results may now be obtained in compressible flows of aeronautical interest. In the second context a new stable very high-order finite difference method is implemented for the spatial discretization of the operators describing the spatial BiGlobal EVP, PSE-3D and the TriGlobal EVP; combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesh adaptation based on error estimation has become a key technique to improve th eaccuracy o fcomputational-fluid-dynamics computations. The adjoint-based approach for error estimation is one of the most promising techniques for computational-fluid-dynamics applications. Nevertheless, the level of implementation of this technique in the aeronautical industrial environment is still low because it is a computationally expensive method. In the present investigation, a new mesh refinement method based on estimation of truncation error is presented in the context of finite-volume discretization. The estimation method uses auxiliary coarser meshes to estimate the local truncation error, which can be used for driving an adaptation algorithm. The method is demonstrated in the context of two-dimensional NACA0012 and three-dimensional ONERA M6 wing inviscid flows, and the results are compared against the adjoint-based approach and physical sensors based on features of the flow field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic three-dimensional flows, which are inhomogeneous in two(and periodic in one)or all three spatial directions.After a brief exposition of the theory,some recent advances are reported. First, results are presented on the implementation of a Jacobian-free Newton–Krylov time-stepping method into a standard finite-volume aerodynamic code to obtain global linear instability results in flows of industrial interest. Second, connections are sought between established and more-modern approaches for structure identification in flows, such as proper orthogonal decomposition and Koopman modes analysis (dynamic mode decomposition), and the possibility to connect solutions of the eigenvalue problem obtained by matrix formation or time-stepping with those delivered by dynamic mode decomposition, residual algorithm, and proper orthogonal decomposition analysis is highlighted in the laminar regime; turbulent and three-dimensional flows are identified as open areas for future research. Finally, a new stable very-high-order finite-difference method is implemented for the spatial discretization of the operators describing the spatial biglobal eigenvalue problem, parabolized stability equation three-dimensional analysis, and the triglobal eigenvalue problem; it is shown that, combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La aparición de inestabilidades en un flujo es un problema importante que puede afectar a algunas aplicaciones aerodinámicas. De hecho existen diferentes tipos de fenómenos no-estacionarios que actualmente son tema de investigación; casos como la separación a altos ángulos de ataque o el buffet transónico son dos ejemplos de cierta relevancia. El análisis de estabilidad global permite identificar la aparición de dichas condiciones inestables, proporcionando información importante sobre la región donde la inestabilidad es dominante y sobre la frecuencia del fenómeno inestable. La metodología empleada es capaz de calcular un flujo base promediado mediante una discretización con volúmenes finitos y posteriormente la solución de un problema de autovalores asociado a la linealización que aparece al perturbar el flujo base. El cálculo numérico se puede dividir en tres pasos: primero se calcula una solución estacionaria para las ecuaciones RANS, luego se extrae la matriz del Jacobiano que representa el problema linealizado y finalmente se deriva y se resuelve el problema de autovalores generalizado mediante el método iterativo de Arnoldi. Como primer caso de validación, la técnica descrita ha sido aplicada a un cilindro circular en condiciones laminares para detectar el principio de las oscilaciones de los vórtices de von Karman, y se han comparado los resultados con experimentos y cálculos anteriores. La parte más importante del estudio se centra en el análisis de flujos compresibles en régimen turbulento. La predicción de la aparición y la progresión de flujo separado a altos ángulos de ataque se han estudiado en el perfil NACA0012 en condiciones tanto subsónicas como supersónicas y en una sección del ala del A310 en condiciones de despegue. Para todas las geometrías analizadas, se ha podido observar que la separación gradual genera la aparición de un modo inestable específico para altos ángulos de ataque siempre mayores que el ángulo asociado al máximo coeficiente de sustentación. Además, se ha estudiado el problema adjunto para obtener información sobre la zona donde una fuerza externa provoca el máximo cambio en el campo fluido. El estudio se ha completado calculando el mapa de sensibilidad estructural y localizando el centro de la inestabilidad. En el presente trabajo de tesis se ha analizado otro importante fenómeno: el buffet transónico. En condiciones transónicas, la interacción entre la onda de choque y la capa límite genera una oscilación de la posición de la onda de choque y, por consiguiente, de las fuerzas aerodinámicas. El conocimiento de las condiciones críticas y su origen puede ayudar a evitar la oscilación causada por estas fuerzas. Las condiciones para las cuales comienza la inestabilidad han sido calculadas y comparadas con trabajos anteriores. Por otra parte, los resultados del correspondiente problema adjunto y el mapa de sensibilidad se han obtenido por primera vez para el buffet, indicando la región del dominio que sera necesario modificar para crear el mayor cambio en las propiedades del campo fluido. Dado el gran consumo de memoria requerido para los casos 3D, se ha realizado un estudio sobre la reducción del domino con la finalidad de reducirlo a la región donde está localizada la inestabilidad. La eficacia de dicha reducción de dominio ha sido evaluada investigando el cambio en la dimensión de la matriz del Jacobiano, no resultando muy eficiente en términos del consumo de memoria. Dado que el buffet es un problema en general tridimensional, el análisis TriGlobal de una geometría 3D podría considerarse el auténtico reto futuro. Como aproximación al problema, un primer estudio se ha realizado empleando una geometría tridimensional extruida del NACA00f2. El cálculo del flujo 3D y, por primera vez en casos tridimensionales compresibles y turbulentos, el análisis de estabilidad TriGlobal, se han llevado a cabo. La comparación de los resultados obtenidos con los resultados del anterior modelo 2D, ha permitido, primero, verificar la exactitud del cálculo 2D realizado anteriormente y también ha proporcionado una estimación del consumo de memoria requerido para el caso 3D. ABSTRACT Flow unsteadiness is an important problem in aerodynamic applications. In fact, there are several types of unsteady phenomena that are still at the cutting edge of research in the field; separation at high angles of attack and transonic buffet are two important examples. Global Stability Analysis can identify the unstable onset conditions, providing important information about the instability location in the domain and the frequency of the unstable phenomenon. The methodology computes a base flow averaged state based on a finite volume discretization and a solution for a generalized eigenvalue problem corresponding to the perturbed linearized equations. The numerical computation is then performed in three steps: first, a steady solution for the RANS equation is computed; second, the Jacobian matrix that represents the linearized problem is obtained; and finally, the generalized eigenvalue problem is derived and solved with an Arnoldi iterative method. As a first validation test, the technique has been applied on a laminar circular cylinder in order to detect the von Karman vortex shedding onset, comparing the results with experiments and with previous calculations. The main part of the study focusses on turbulent and compressible cases. The prediction of the origin and progression of separated flows at high angles of attack has been studied on the NACA0012 airfoil at subsonic and transonic conditions and for the A310 airfoil in take-off configuration. For all the analyzed geometries, it has been found that gradual separation generates the appearance of one specific unstable mode for angles of attack always greater than the ones related to the maximum lift coefficient. In addition, the adjoint problem has been studied to suggest the location of an external force that results in the largest change to the flow field. From the direct and the adjoint analysis the structural sensitivity map has been computed and the core of the instability has been located. The other important phenomenon analyzed in this work is the transonic buffet. In transonic conditions, the interaction between the shock wave and the boundary layer leads to an oscillation of the shock location and, consequently, of the aerodynamic forces. Knowing the critical operational conditions and its origin can be helpful in preventing such fluctuating forces. The instability onset has then been computed and compared with the literature. Moreover, results of the corresponding adjoint problem and a sensitivity map have been provided for the first time for the buffet problem, indicating the region that must be modified to create the biggest change in flow field properties. Because of the large memory consumption required when a 3D case is approached, a domain reduction study has been carried out with the aim of limiting the domain size to the region where the instability is located. The effectiveness of the domain reduction has been evaluated by investigating the change in the Jacobian matrix size, not being very efficient in terms of memory consumption. Since buffet is a three-dimensional problem, TriGlobal stability analysis can be seen as a future challenge. To approximate the problem, a first study has been carried out on an extruded three-dimensional geometry of the NACA0012 airfoil. The 3D flow computation and the TriGlobal stability analysis have been performed for the first time on a compressible and turbulent 3D case. The results have been compared with a 2D model, confirming that the buffet onset evaluated in the 2D case is well detected. Moreover, the computation has given an indication about the memory consumption for a 3D case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microcanonical finite-size ansatz in terms of quantities measurable in a finite lattice allows extending phenomenological renormalization the so-called quotients method to the microcanonical ensemble. The ansatz is tested numerically in two models where the canonical specific heat diverges at criticality, thus implying Fisher renormalization of the critical exponents: the three-dimensional ferromagnetic Ising model and the two-dimensional four-state Potts model (where large logarithmic corrections are known to occur in the canonical ensemble). A recently proposed microcanonical cluster method allows simulating systems as large as L = 1024 Potts or L= 128 (Ising). The quotients method provides accurate determinations of the anomalous dimension, η, and of the (Fisher-renormalized) thermal ν exponent. While in the Ising model the numerical agreement with our theoretical expectations is very good, in the Potts case, we need to carefully incorporate logarithmic corrections to the microcanonical ansatz in order to rationalize our data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper shows the analysis results obtained from more than 200 finite element method (FEM) models used to calculate the settlement of a foundation resting on two soils of differing deformability. The analysis considers such different parameters as the foundation geometry, the percentage of each soil in contact with the foundation base and the ratio of the soils’ elastic moduli. From the described analysis, it is concluded that the maximum settlement of the foundation, calculated by assuming that the foundation is completely resting on the most deformable soil, can be correlated with the settlement calculated by FEM models through a correction coefficient named “settlement reduction factor” (α). As a consequence, a novel expression is proposed for calculating the real settlement of a foundation resting on two soils of different deformability with maximum errors lower than 1.57%, as demonstrated by the statistical analysis carried out. A guide for the application of the proposed simple method is also explained in the paper. Finally, the proposed methodology has been validated using settlement data from an instrumented foundation, indicating that this is a simple, reliable and quick method which allows the computation of the maximum elastic settlement of a raft foundation, evaluates its suitability and optimises its selection process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Far-field stresses are those present in a volume of rock prior to excavations being created. Estimates of the orientation and magnitude of far-field stresses, often used in mine design, are generally obtained by single-point measurements of stress, or large-scale, regional trends. Point measurements can be a poor representation of far-field stresses as a result of excavation-induced stresses and geological structures. For these reasons, far-field stress estimates can be associated with high levels of uncertainty. The purpose of this thesis is to investigate the practical feasibility, applications, and limitations of calibrating far-field stress estimates through tunnel deformation measurements captured using LiDAR imaging. A method that estimates the orientation and magnitude of excavation-induced principal stress changes through back-analysis of deformation measurements from LiDAR imaged tunnels was developed and tested using synthetic data. If excavation-induced stress change orientations and magnitudes can be accurately estimated, they can be used in the calibration of far-field stress input to numerical models. LiDAR point clouds have been proven to have a number of underground applications, thus it is desired to explore their use in numerical model calibration. The back-analysis method is founded on the superposition of stresses and requires a two-dimensional numerical model of the deforming tunnel. Principal stress changes of known orientation and magnitude are applied to the model to create calibration curves. Estimation can then be performed by minimizing squared differences between the measured tunnel and sets of calibration curve deformations. In addition to the back-analysis estimation method, a procedure consisting of previously existing techniques to measure tunnel deformation using LiDAR imaging was documented. Under ideal conditions, the back-analysis method estimated principal stress change orientations within ±5° and magnitudes within ±2 MPa. Results were comparable for four different tunnel profile shapes. Preliminary testing using plastic deformation, a rough tunnel profile, and profile occlusions suggests that the method can work under more realistic conditions. The results from this thesis set the groundwork for the continued development of a new, inexpensive, and efficient far-field stress estimate calibration method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site 996 is located above the Blake Diapir where numerous indications of vertical fluid migration and the presence of hydrate existed prior to Ocean Drilling Program (ODP) Leg 164. Direct sampling of hydrates and visual observations of hydrate-filled veins that could be traced 30-40 cm along cores suggest a connection between fluid migration and hydrate formation. The composition of pore water squeezed from sediment cores showed large variations due to melting of hydrate during core recovery and influence of saline water from the evaporitic diapir below. Analysis of water released during hydrate decomposition experiments showed that the recovered hydrates contained significant amounts of pore water. Solutions of the transport equations for deuterium (d2H) and chloride (Cl-) were used to determine maximum (d2H) and minimum (Cl-) in situ concentrations of these species. Minimum in situ concentrations of hydrate were estimated by combining these results with Cl- and d2H values measured on hydrate meltwaters and pore waters obtained by squeezing of sediments, by the means of a method based on analysis of distances in the two-dimensional Cl- d2H space. The computed Cl- and d2H distribution indicates that the minimum hydrate amount solutions are representative of the actual hydrate amount. The highest and mean hydrate concentrations estimates from our model are 31% and 10% of the pore space, respectively. These concentrations agree well with visual core observations, supporting the validity of the model assumptions. The minimum in situ Cl- concentrations were used to constrain the rates of upward fluid migration. Simulation of all available data gave a mean flow rate of 0.35 m/k.y. (range: 0.125-0.5 m/k.y.).