829 resultados para transformation parameter
Resumo:
Although an essential condition for the occurrence of human development, economic growth is not always efficiently converted into quality of life by nation-states. Accordingly, the objective of this study is to measure the social efficiency-the ability of a nation-state to convert its produced wealth into quality of life-of a set of 101 countries. To achieve this goal, the Data Envelopment Analysis method was used in its standard, cross-multiplicative and inverted form, by means of a new approach called 'triple index'. The main results indicated that the former Soviet republics and Eastern European countries stood out in terms of social efficiency. The developed countries, notwithstanding their high social indicators, did not excel in efficiency; however, the countries of south of Africa, despite having the worst social conditions, were also the most inefficient.
Resumo:
To evaluate the effect of grinding and airborne-particle abrasion on the biaxial flexural strength (BFS) and phase transformation of a Y-TZP ceramic, and examine whether sintering the veneering porcelain renders the previous heat treatment recommended by the manufacturer unnecessary. Materials and Methods: Lava zirconia specimens (N = 108) were obtained with the following dimensions: 14.0 mm diameter × 1.3 mm thickness (n = 36) and 14.0 mm × 1.6 mm (n = 72). The thicker specimens were ground with diamond burs under irrigation and received (heat-treated groups) or not (non-heat-treated groups) a heat treatment (1000°C for 30 min) prior to the four firing cycles applied to simulate the sintering of the veneering porcelain. All specimens were air abraded as follows (n = 12): 1) 30-μm silica-modified Al2O3 particles (Rocatec Soft); 2) 110-μm silica-modified Al2O3 particles (Rocatec Plus); and 3) 120-μm Al2O3 particles, followed by Rocatec Plus. Three specimens of each group were analyzed by x-ray diffraction (XRD) to assess the monoclinic phase content (%). The BFS test was performed in a mechanical testing machine (Instron 8874). Data (MPa) were analyzed by two-way ANOVA (grinding × airborne-particle abrasion and heat treatment × airborne-particle abrasion) and Tukey's post-hoc test (α = 0.05). The strength reliability was analyzed using the Weibull distribution. Results: Grinding significantly decreased the BFS of the non-heat-treated groups (p < 0.01). Within the ground groups, the previous heat treatment did not influence the BFS (p > 0.05). Air abrasion only influenced the BFS of the ground/heat-treated groups (p < 0.01). For the non-heat-treated groups, the grinding did not decrease the Weibull modulus (m), but it did decrease the characteristic strength (σ0). For Rocatec Soft and 120-μm Al2O3 particles + Rocatec Plus, the heat-treated groups presented lower m and higher σ0 than the ground/non-heat-treated groups. The independent variables did not seem to influence phase transformation. Air-abraded surfaces presented higher monoclinic zirconia content than the as-sintered and ground surfaces, which exhibited similar content. Conclusion: Even under irrigation, grinding compromised the Y-TZP ceramic strength. The sintering of the veneering porcelain rendered the previous heat treatment recommended by the manufacturer unnecessary. Airborneparticle abrasion influenced the strength of heat-treated zirconia.
Resumo:
To evaluate the effect of grinding and airborne-particle abrasion on the biaxial flexural strength (BFS) and phase transformation of a Y-TZP ceramic, and examine whether sintering the veneering porcelain renders the previous heat treatment recommended by the manufacturer unnecessary. Materials and Methods: Lava zirconia specimens (N = 108) were obtained with the following dimensions: 14.0 mm diameter × 1.3 mm thickness (n = 36) and 14.0 mm × 1.6 mm (n = 72). The thicker specimens were ground with diamond burs under irrigation and received (heat-treated groups) or not (non-heat-treated groups) a heat treatment (1000°C for 30 min) prior to the four firing cycles applied to simulate the sintering of the veneering porcelain. All specimens were air abraded as follows (n = 12): 1) 30-μm silica-modified Al2O3 particles (Rocatec Soft); 2) 110-μm silica-modified Al2O3 particles (Rocatec Plus); and 3) 120-μm Al2O3 particles, followed by Rocatec Plus. Three specimens of each group were analyzed by x-ray diffraction (XRD) to assess the monoclinic phase content (%). The BFS test was performed in a mechanical testing machine (Instron 8874). Data (MPa) were analyzed by two-way ANOVA (grinding × airborne-particle abrasion and heat treatment × airborne-particle abrasion) and Tukey's post-hoc test (α = 0.05). The strength reliability was analyzed using the Weibull distribution. Results: Grinding significantly decreased the BFS of the non-heat-treated groups (p < 0.01). Within the ground groups, the previous heat treatment did not influence the BFS (p > 0.05). Air abrasion only influenced the BFS of the ground/heat-treated groups (p < 0.01). For the non-heat-treated groups, the grinding did not decrease the Weibull modulus (m), but it did decrease the characteristic strength (σ0). For Rocatec Soft and 120-μm Al2O3 particles + Rocatec Plus, the heat-treated groups presented lower m and higher σ0 than the ground/non-heat-treated groups. The independent variables did not seem to influence phase transformation. Air-abraded surfaces presented higher monoclinic zirconia content than the as-sintered and ground surfaces, which exhibited similar content. Conclusion: Even under irrigation, grinding compromised the Y-TZP ceramic strength. The sintering of the veneering porcelain rendered the previous heat treatment recommended by the manufacturer unnecessary. Airborneparticle abrasion influenced the strength of heat-treated zirconia.
Resumo:
Statement of problem Because airborne-particle abrasion is an efficient method of improving the bond at the zirconia-cement interface, understanding its effect on the strength of yttria-stabilized tetragonal zirconia polycrystal is important. Purpose The purpose of this study was to evaluate the effect of the particle size used for airborne-particle abrasion on the flexural strength and phase transformation of a commercially available yttria-stabilized tetragonal zirconia polycrystal ceramic. Material and Methods For both flexural strength (20.0 × 4.0 × 1.2 mm) (n=14) and phase transformation (14.0-mm diameter × 1.3-mm thickness) (n=4), the zirconia specimens were made from Lava, and their surfaces were treated in the following ways: as-sintered (control); with 50-μm aluminum oxide (Al2O3) particles; with 120-μm Al2O3 particles; with 250-μm Al2O3 particles; with 30-μm silica-modified Al2O3 particles (Cojet Sand); with 120-μm Al2O3 particles, followed by 110-μm silica-modified Al2O3 particles (Rocatec Plus); and with Rocatec Plus. The phase transformation (%) was assessed by x-ray diffraction analysis. The 3-point flexural strength test was conducted in artificial saliva at 37°C in a mechanical testing machine. The data were analyzed by 1-way ANOVA and the Tukey honestly significant difference post hoc test (α=.05). Results Except for the Cojet Sand group, which exhibited statistically similar flexural strength to that of the as-sintered group and for the group abraded with 250-μm Al2O3 particles, which presented the lowest strength, airborne-particle abrasion with the other particle sizes provided the highest values, with no significant difference among them. The as-sintered specimens presented no monoclinic phase. The groups abraded with smaller particles (30 μm and 50 μm) and those treated with the larger ones (110 μm and/or 120 μm particles and 250 μm) exhibited percentages of monoclinic phase that varied from 4% to 5% and from 8.7% to 10%. Conclusions Except for abrasion with Cojet Sand, depending on the particle size, zirconia exhibited an increase or a decrease in its flexural strength. Airborne-particle abrasion promoted phase transformation (tetragonal to monoclinic), and the percentage of monoclinic phase varied according to the particle size.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Optical flow methods are accurate algorithms for estimating the displacement and velocity fields of objects in a wide variety of applications, being their performance dependent on the configuration of a set of parameters. Since there is a lack of research that aims to automatically tune such parameters, in this work we have proposed an evolutionary-based framework for such task, thus introducing three techniques for such purpose: Particle Swarm Optimization, Harmony Search and Social-Spider Optimization. The proposed framework has been compared against with the well-known Large Displacement Optical Flow approach, obtaining the best results in three out eight image sequences provided by a public dataset. Additionally, the proposed framework can be used with any other optimization technique.
Resumo:
We examine, from both the experimental and theoretical point of view, the behavior of the maximum splitting ΔE, of the 7F1 manifold of the Eu3+ ion as a function of the so-called crystal field strength parameter, Nv, in a series of oxides. In connection with the original theory that describes the relation between ΔE and Nv, a more consistent procedure to describe this relation is presented for the cases of small total angular momentum J. Good agreement is found between theory and experiment. © 1995.
Resumo:
Priestley and Taylor provided a practical formulation of the partitioning of net radiation between heat flux and evaporation contained within a parameter α. Their model (PTM) needs verification under a range of environmental conditions. Micrometeorological data sets collected over the Amazon forest at the Ducke Reserve site (2°57′S; 59°57′W) gave an opportunity to evaluate α. Evidence presented here and by others shows that there is pronounced diurnal variation in α, with minimum values around midday and maximum values in the morning and evening hours. During unstable and stable conditions in the daylight hours, the Bowen ratio (B) varied from 0.10 to 0.57 and -0.71 to -0.08, respectively, whereas α varied from 0.67 to 1.16 and 1.28 to 3.12, respectively. A mean value of α = 1.16±0.56 was obtained from daytime hourly values for two days. The daily data sets from three expeditions gave a mean of α = 1.03±0.13. This work confirms that α is a function of atmospheric stability over the Amazon forest. Thus the PTM should be applied with caution over time-intervals of one day or less because of the sensitivity to variation in α. The calculated values of α are in general agreement with those reported in literature. © 1991.
Resumo:
A low-energy shape-independent expansion is suggested for the function tan(2εBB)/(2k2), where εBB is the Blatt-Biedenharn mixing parameter for the 3S1 - 3D1 channel. This expansion allows an evaluation of the mixing parameter εBB from a knowledge of the deuteron asymptotic D to S ratio, pion mass and other low-energy observables, such as the scattering lengths, deuteron binding etc., of the nucleon-nucleon system. We demonstrate that the correct long range behavior of the tensor potential is essential for a realistic reproduction of εBB.
Resumo:
The new result presented here is a theorem involving series in the three-parameter Mittag-Le er function. As a by-product, we recover some known results and discuss corollaries. As an application, we obtain the solution of a fractional di erential equation associated with a RLC electrical circuit in a closed form, in terms of the two-parameter Mittag-Le er function.