985 resultados para transfer reactions
Resumo:
MetaNetX is a repository of genome-scale metabolic networks (GSMNs) and biochemical pathways from a number of major resources imported into a common namespace of chemical compounds, reactions, cellular compartments-namely MNXref-and proteins. The MetaNetX.org website (http://www.metanetx.org/) provides access to these integrated data as well as a variety of tools that allow users to import their own GSMNs, map them to the MNXref reconciliation, and manipulate, compare, analyze, simulate (using flux balance analysis) and export the resulting GSMNs. MNXref and MetaNetX are regularly updated and freely available.
Resumo:
The possibility of printing two-dimensional micropatterns of biomolecule solutions is of great interest in many fields of research in biomedicine, from cell-growth and development studies to the investigation of the mechanisms of communication between cells. Although laser-induced forward transfer (LIFT) has been extensively used to print micrometric droplets of biological solutions, the fabrication of complex patterns depends on the feasibility of the technique to print micron-sized lines of aqueous solutions. In this study we investigate such a possibility through the analysis of the influence of droplet spacing of a water and glycerol solution on the morphology of the features printed by LIFT. We prove that it is indeed possible to print long and uniform continuous lines by controlling the overlap between adjacent droplets. We show how, depending on droplet spacing, several printed morphologies are generated, and we offer, in addition, a simple explanation of the observed behavior based on the jetting dynamics characteristic of the LIFT of liquids.
Resumo:
Chemically modified electrodes (CMEs) have been subject of considerable attention since its inception about 23 years ago. CMEs result of a deliberate immobilization of a modifier agent onto the electrode surface obtained through chemical reactions, chemisorption, composite formation or polymer coating. This immobilization seeks transfer the physicochemical properties of the modifier to the electrode surface and thus to dictate and control the behavior of the electrode/solution interface. In recent years the interest in CMEs has increased particularly to enhance the sensitivity and/or the selectivity of electroanalytical techniques. In general higher sensitivity and/or selectivity may be achieved by exploiting one or more of the following phenomena: electrocatalysis, preconcentration and interferents exclusion. This paper deals with the application of CMEs in electroanalysis, including a brief presentation of the more general procedures that have been employed for the modification of electrode surfaces.
Resumo:
Better models are needed for radiative heat transfer in boiler furnaces. If the process is known better, combustion in the furnace can be optimized to produce low emissions. It makes the process to be environmental friendly. Furthermore, if there is a better model of the furnace it can more fully explain what is happening inside the furnace. Using of the model one can quickly and easily analyze how it operates with bio fuels, moist fuels or difficult fuels and improve the operation. Models helps with better estimation of furnace dimensions and result in more accurate understanding of operation. Key component lacking in these models is radiative heat transfer in particle laden gases. If there are no particles than radiative heat transfer can be calculated approximately. There are two problems with current models when used with flow modeling. The first one is a need to account for a particle laden gas and the second one is an absence of a fast algorithm. Fast calculation is needed if radiative heat transfer calculation is done for a large CDF model. Computations slow down if time is required for calculating radiative properties over and over again. This thesis presents a band model for radiative heat transfer in boiler furnaces. Advantage is a quickness of calculation and account of particles in the process.
Resumo:
The importance of the regional level in research has risen in the last few decades and a vast literature in the fields of, for instance, evolutionary and institutional economics, network theories, innovations and learning systems, as well as sociology, has focused on regional level questions. Recently the policy makers and regional actors have also began to pay increasing attention to the knowledge economy and its needs, in general, and the connectivity and support structures of regional clusters in particular. Nowadays knowledge is generally considered as the most important source of competitive advantage, but even the most specialised forms of knowledge are becoming a short-lived resource for example due to the accelerating pace of technological change. This emphasizes the need of foresight activities in national, regional and organizational levels and the integration of foresight and innovation activities. In regional setting this development sets great challenges especially in those regions having no university and thus usually very limited resources for research activities. Also the research problem of this dissertation is related to the need to better incorporate the information produced by foresight process to facilitate and to be used in regional practice-based innovation processes. This dissertation is a constructive case study the case being Lahti region and a network facilitating innovation policy adopted in that region. Dissertation consists of a summary and five articles and during the research process a construct or a conceptual model for solving this real life problem has been developed. It is also being implemented as part of the network facilitating innovation policy in the Lahti region.
Resumo:
The chemistry of gold dissolution in alkaline cyanide solution has continually received attention and new rate equations expressing the gold leaching are still developed. The effect of leaching parameters on gold gold cyanidation is studied in this work in order to optimize the leaching process. A gold leaching model, based on the well-known shrinking-core model, is presented in this work. It is proposed that the reaction takes place at the reacting particle surface which is continuously reduced as the reaction proceeds. The model parameters are estimated by comparing experimental data and simulations. The experimental data used in this work was obtained from Ling et al. (1996) and de Andrade Lima and Hodouin (2005). Two different rate equations, where the unreacted amount of gold is considered in one equation, are investigated. In this work, it is presented that the reaction at the surface is the rate controlling step since there is no internal diffusion limitation. The model considering the effect of non-reacting gold shows that the reaction orders are consistent with the experimental observations reported by Ling et al. (1996) and de Andrade Lima and Hodouin (2005). However, it should be noted that the model obtained in this work is based on assumptions of no side reactions, no solid-liquid mass transfer resistances and no effect from temperature.
Resumo:
This thesis gathers knowledge about ongoing high-temperature reactor projects around the world. Methods for calculating coolant flow and heat transfer inside a pebble-bed reactor core are also developed. The thesis begins with the introduction of high-temperature reactors including the current state of the technology. Process heat applications that could use the heat from a high-temperature reactor are also introduced. A suitable reactor design with data available in literature is selected for the calculation part of the thesis. Commercial computational fluid dynamics software Fluent is used for the calculations. The pebble-bed is approximated as a packed-bed, which causes sink terms to the momentum equations of the gas flowing through it. A position dependent value is used for the packing fraction. Two different models are used to calculate heat transfer. First a local thermal equilibrium is assumed between the gas and solid phases and a single energy equation is used. In the second approach, separate energy equations are used for the phases. Information about steady state flow behavior, pressure loss, and temperature distribution in the core is obtained as results of the calculations. The effect of inlet mass flow rate to pressure loss is also investigated. Data found in literature and the results correspond each other quite well, considered the amount of simplifications in the calculations. The models developed in this thesis can be used to solve coolant flow and heat transfer in a pebble-bed reactor, although additional development and model validation is needed for better accuracy and reliability.
Resumo:
Members of the bacterial genus Streptomyces are well known for their ability to produce an exceptionally wide selection of diverse secondary metabolites. These include natural bioactive chemical compounds which have potential applications in medicine, agriculture and other fields of commerce. The outstanding biosynthetic capacity derives from the characteristic genetic flexibility of Streptomyces secondary metabolism pathways: i) Clustering of the biosynthetic genes in chromosome regions redundant for vital primary functions, and ii) the presence of numerous genetic elements within these regions which facilitate DNA rearrangement and transfer between non-progeny species. Decades of intensive genetic research on the organization and function of the biosynthetic routes has led to a variety of molecular biology applications, which can be used to expand the diversity of compounds synthesized. These include techniques which, for example, allow modification and artificial construction of novel pathways, and enable gene-level detection of silent secondary metabolite clusters. Over the years the research has expanded to cover molecular-level analysis of the enzymes responsible for the individual catalytic reactions. In vitro studies of the enzymes provide a detailed insight into their catalytic functions, mechanisms, substrate specificities, interactions and stereochemical determinants. These are factors that are essential for the thorough understanding and rational design of novel biosynthetic routes. The current study is a part of a more extensive research project (Antibiotic Biosynthetic Enzymes; www.sci.utu.fi/projects/biokemia/abe), which focuses on the post-PKS tailoring enzymes involved in various type II aromatic polyketide biosynthetic pathways in Streptomyces bacteria. The initiative here was to investigate specific catalytic steps in anthracycline and angucycline biosynthesis through in vitro biochemical enzyme characterization and structural enzymology. The objectives were to elucidate detailed mechanisms and enzyme-level interactions which cannot be resolved by in vivo genetic studies alone. The first part of the experimental work concerns the homologous polyketide cyclases SnoaL and AknH. These catalyze the closure of the last carbon ring of the tetracyclic carbon frame common to all anthracycline-type compounds. The second part of the study primarily deals with tailoring enzymes PgaE (and its homolog CabE) and PgaM, which are responsible for a cascade of sequential modification reactions in angucycline biosynthesis. The results complemented earlier in vivo findings and confirmed the enzyme functions in vitro. Importantly, we were able to identify the amino acid -level determinants that influence AknH and SnoaL stereoselectivity and to determine the complex biosynthetic steps of the angucycline oxygenation cascade of PgaE and PgaM. In addition, the findings revealed interesting cases of enzyme-level adaptation, as some of the catalytic mechanisms did not coincide with those described for characterised homologs or enzymes of known function. Specifically, SnoaL and AknH were shown to employ a novel acid-base mechanism for aldol condenzation, whereas the hydroxylation reaction catalysed by PgaM involved unexpected oxygen chemistry. Owing to a gene-level fusion of two ancestral reading frames, PgaM was also shown to adopt an unusual quaternary sturucture, a non-covalent fusion complex of two alternative forms of the protein. Furthermore, the work highlighted some common themes encountered in polyketide biosynthetic pathways such as enzyme substrate specificity and intermediate reactivity. These are discussed in the final chapters of the work.
Resumo:
Four commonplace concerted reactions are examined using (i) correlation diagrams, (ii) frontier molecular orbital analyses for transition states, (iii) Zimmerman-Dewar analyses for transition states and (iv) modified Zimmerman-Dewar analyses for transition states. Only the latter approach is consistently satisfactory.
Resumo:
Drug transporting membrane proteins are expressed in various human tissues and blood-tissue barriers, regulating the transfer of drugs, toxins and endogenous compounds into or out of the cells. Various in vitro and animal experiments suggest that P-glycoprotein (P-gp) forms a functional barrier between maternal and fetal blood circulation in the placenta thereby protecting the fetus from exposure to xenobiotics during pregnancy. The multidrug resistance-associated protein 1 (MRP1) is a relatively less studied transporter protein in the human placenta. The aim of this study series was to study the role of placental transporters, apical P-gp and basal MRP1, using saquinavir as a probe drug, and to study transfer of quetiapine and the role of P-gp in its transfer in the dually perfused human placenta/cotyledon. Furthermore, two ABCB1 (encoding P-gp) polymorphisms (c.3435C>T, p.Ile1145Ile and c.2677G>T/A, p.Ala893Ser/Thr) were studied to determine their impact on P-gp protein expression level and on the transfer of the study drugs. Also, the influence of the P-gp protein expression level on the transfer of the study drugs was addressed. Because P-gp and MRP1 are ATP-dependent drug-efflux pumps, it was studied whether exogenous ATP is needed for the function of ATP-dependent transporter in the present experimental model. The present results indicated that the addition of exogenous ATP was not necessary for transporter function in the perfused human placental cotyledon. Saquinavir and quetiapine were both found to cross the human placenta; transplacental transfer (TPTAUC %) for saquinavir was <0.5% and for quetiapine 3.7%. Pharmacologic blocking of P-gp led to disruption of the blood-placental barrier (BPB) and increased the placental transfer of P-gp substrate, saquinavir, into the fetal circulation by 6- to 8-fold. In reversed perfusions P-gp, MRP1 and possibly OATP2B1 had a negligible role in the fetal-to-maternal transfer of saquinavir. The TPTAUC % of saquinavir was about 100-fold greater from the fetal side to the maternal side compared with the maternal-to-fetal transfer. P-gp activity is not likely to modify the placental transfer of quetiapine. Higher P-gp protein expression levels were associated with the variant allele 3435T, but no correlation was found between the TPTAUC % of saquinavir and placental P-gp protein expression. The present results indicate that P-gp activity drastically affects the fetal exposure to saquinavir, and suggest that pharmacological blockade of the P-gp activity during pregnancy may pose an increased risk for adverse fetal outcome. The blockade of P-gp activity could be used in purpose to obtain higher drug concentration to the fetal side, for example, in prevention (to decrease virus transfer to fetal side) or in treating sick fetus.
Resumo:
Aromatic nitration is one of the most relevant class of reactions in organic chemistry. It has been intensively studied by both experimental, including works in the condensed as well as in the gas phase, and theoretical procedures. However, the published results do not seem to converge to an unique mechanism. Electrophilic substitution and electron transfer, in an exclusive way, are both proposed as the main mechanism for the reaction. We review these proposals and discuss the most recent findings.
Resumo:
A rapid, expedient and enantioselective method for the synthesis of beta-hydroxy amines and monosubstituted aziridines in up to 99% e.e., via asymmetric transfer hydrogenation of a-amino ketones and cyclisation through treatment with tosyl chloride and base, is described. (1R,2R)-N-(para-toluenesulfonyl)-1,2-ethylenediamine with formic acid has been utilised as a ligand for the Ruthenium (II) catalysed enantioselective transfer hydrogenation of the ketones.The chiral 2-methyl aziridine, which is a potentially more efficient bonding agent for Rocket Solid Propellant has been successfully achieved.
Resumo:
Data traffic caused by mobile advertising client software when it is communicating with the network server can be a pain point for many application developers who are considering advertising-funded application distribution, since the cost of the data transfer might scare their users away from using the applications. For the thesis project, a simulation environment was built to mimic the real client-server solution for measuring the data transfer over varying types of connections with different usage scenarios. For optimising data transfer, a few general-purpose compressors and XML-specific compressors were tried for compressing the XML data, and a few protocol optimisations were implemented. For optimising the cost, cache usage was improved and pre-loading was enhanced to use free connections to load the data. The data traffic structure and the various optimisations were analysed, and it was found that the cache usage and pre-loading should be enhanced and that the protocol should be changed, with report aggregation and compression using WBXML or gzip.
Resumo:
This study illustrates the different types of plate heat exchangers that are commonly used in various domestic and industrial applications. The main purpose of this paper was to devise a methodology that is capable of calculating optimum number of plates in the design of a plate heat exchanger. To obtain the appropriate number of plates, typically several iterations must be made before a final acceptable design is completed, since plate amount depends on many factors such as, flow velocities, physical properties of the streams, flow channel geometry, allowable pressure drop, plate dimensions, and the gap between the plates. The methodology presented here can be used as a general guide for designing a plate heat exchanger. To investigate the effects of relevant parameters on the thermal-hydraulic design of a plate heat exchanger, several experiments were carried out for single-phase and counter flow arrangement with two brazed plate heat exchangers by varying the flow rates and the inlet temperatures of the fluid streams. The actual heat transfer coefficients obtained based on the experiment were nearly close to the calculated values and to improve the design, a correction factor was introduced. Besides, the effect of flow channel velocity on the pressure drop inside the unit is presented.
Sustainability of palm oil production and opportunities for Finnish technology and know-how transfer
Resumo:
The global demand for palm oil is growing, thus prompting an increase in the global production particularly in Malaysia and Indonesia. Such increasing demand for palm oil is due to palm oil’s relatively cheap price and versatile advantage both in edible and non-edible applications. Along with the increasing demand for palm oil, particularly for the production of biofuel, is a heated debate on its sustainability. Ecological degradation, climate change and social issues are among the main sustainability issues pressing the whole palm oil industry today. Clean Development Mechanism (CDM) projects fulfilling the imperatives of the Kyoto Protocol are starting to gain momentum in Malaysia as reflected by the increasing registration of CDM projects in the palm oil mills. Most CDM projects in palm oil mills are on waste-to-energy, cocomposting, and methane recovery with the latter being the most common. The study on greenhouse gases (GHG) in the milling process points that biogas collection and energy utilisation has the greatest positive effect on GHG balance. On the other hand, empty fruit bunches (EFB) end-use as energy and high energy efficiency of the mill have the least effect on GHG balance of the mill. The range of direct GHG emissions from the palm oil mill is from 2.5 to 27 gCO2e/MJCPO, while the range of GHG emissions with all indirect and avoided emissions included is from -9 to 29 gCO2e/MJCPO. Comparing this GHG balance result with that of the EU RES-Directive suggests a further check on the values and emissions consideration of the latter.