988 resultados para transcutaneous electric nerve stimulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Left recurrent laryngeal nerve palsy usually results from invasion or compression of the nerve caused by diseases localized within the aortopulmonary window. This study reports the case of a 76-yr-old male with vocal cord paralysis due to lymph node involvement by silicosis. This rare entity was identified by video-mediastinoscopy, which revealed a granulomatous and fibrosed recurrent lymph node encasing the nerve. The nerve was dissected and released from scar tissues. Progressive clinical improvement was observed followed by total and durable recovery of the voice after 15 weeks follow-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Action representations can interact with object recognition processes. For example, so-called mirror neurons respond both when performing an action and when seeing or hearing such actions. Investigations of auditory object processing have largely focused on categorical discrimination, which begins within the initial 100 ms post-stimulus onset and subsequently engages distinct cortical networks. Whether action representations themselves contribute to auditory object recognition and the precise kinds of actions recruiting the auditory-visual mirror neuron system remain poorly understood. We applied electrical neuroimaging analyses to auditory evoked potentials (AEPs) in response to sounds of man-made objects that were further subdivided between sounds conveying a socio-functional context and typically cuing a responsive action by the listener (e.g. a ringing telephone) and those that are not linked to such a context and do not typically elicit responsive actions (e.g. notes on a piano). This distinction was validated psychophysically by a separate cohort of listeners. Beginning approximately 300 ms, responses to such context-related sounds significantly differed from context-free sounds both in the strength and topography of the electric field. This latency is >200 ms subsequent to general categorical discrimination. Additionally, such topographic differences indicate that sounds of different action sub-types engage distinct configurations of intracranial generators. Statistical analysis of source estimations identified differential activity within premotor and inferior (pre)frontal regions (Brodmann's areas (BA) 6, BA8, and BA45/46/47) in response to sounds of actions typically cuing a responsive action. We discuss our results in terms of a spatio-temporal model of auditory object processing and the interplay between semantic and action representations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on neuroimaging data showing absence of the trochlear nerve, congenital superior oblique palsy is now classified as a congenital cranial dysinnervation disorder. A similar absence of the abducens nerve is accompanied by misinnervation to the lateral rectus muscle from a branch of oculomotor nerve in the Duane retraction syndrome. This similarity raises the question of whether some cases of Brown syndrome could arise from a similar synkinesis between the inferior and superior oblique muscles in the setting of congenital superior oblique palsy. This hypothesis has gained support from the confluence of evidence from a number of independent studies. Using Duane syndrome as a model, we critically review the accumulating evidence that some cases of Brown syndrome are ultimately attributable to dysgenesis of the trochlear nerve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate-sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators.METHODS: In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with (31)phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems.RESULTS: We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by (31)phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity.CONCLUSIONS: Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropathic pain is a major health issue and is frequently accompanied by allodynia (painful sensations in response to normally non-painful stimulations), and unpleasant paresthesia/dysesthesia, pointing to alterations in sensory pathways normally dedicated to the processing of non-nociceptive information. Interestingly, mounting evidence indicate that central glial cells are key players in allodynia, partly due to changes in the astrocytic capacity to scavenge extracellular glutamate and gamma-aminobutyric acid (GABA), through changes in their respective transporters (EAAT and GAT). In the present study, we investigated the glial changes occurring in the dorsal column nuclei, the major target of normally innocuous sensory information, in the rat spared nerve injury (SNI) model of neuropathic pain. We report that together with a robust microglial and astrocytic reaction in the ipsilateral gracile nucleus, the GABA transporter GAT-1 is upregulated with no change in GAT-3 or glutamate transporters. Furthermore, [(3)H] GABA reuptake on crude synaptosome preparation shows that transporter activity is functionally increased ipsilaterally in SNI rats. This GAT-1 upregulation appears evenly distributed in the gracile nucleus and colocalizes with astrocytic activation. Neither glial activation nor GAT-1 modulation was detected in the cuneate nucleus. Together, the present results point to GABA transport in the gracile nucleus as a putative therapeutic target against abnormal sensory perceptions related to neuropathic pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is anecdotal evidence that athletes use the banned substance Synacthen because of its perceived benefit with its associated rise in cortisol. To test the performance-enhancing effects of Synacthen, eight trained cyclists completed two, 2-day exercise sessions separated by 7-10 days. On the first day of each 2-day exercise session, subjects received either Synacthen (0.25 mg, TX) or placebo (PLA) injection. Performance was assessed by a 20-km time trial (TT) after a 90-min fatigue period on day 1 and without the fatiguing protocol on day 2. Plasma androgens and ACTH concentrations were measured during the exercise bouts as well as the rate of perceived exertion (RPE). Spot urines were analyzed for androgens and glucocorticoids quantification. Basal plasma hormones did not differ significantly between PLA and TX groups before and 24 h after the IM injection (P > 0.05). After TX injection, ACTH peaked at 30 min and hormone profiles were significantly different compared to the PLA trial (P < 0.001). RPE increased significantly in both groups as the exercise sessions progressed (P < 0.001) but was not influenced by treatment. The time to completion of the TT was not affected on both days by Synacthen treatment. In the present study, a single IM injection of synthetic ACTH did not improve either acute or subsequent cycling performance and did not influence perceived exertion. The investigated urinary hormones did not vary after treatment, reinforcing the difficulty for ACTH abuse detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracranial hypertension is an emergency suspected from clinical symptoms, imaging data and ophthalomologic signs. Intracranial hypertension is confirmed by invasive intracranial monitoring, which is the gold standard technique to measure intracranial pressure (ICP). Because of complications, hemorrhage or infection, non-invasive methods have been developed such as neuroimaging, transcranial Doppler sonography and optic nerve sheath diameter (ONSD) ultrasonography. We have reviewed ONSD technique that detects intracranial hypertension related volume variations of subarachnoid space along the retro bulbar segment of the optic nerve. Technique, indications and prospects are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous null mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21days in wild-type mice to greater than 38days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4weeks and tibial mixed sensory and motor nerve at 3weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Après la compression du nerf médian au niveau du tunnel carpien, la compression du nerf ulnaire au niveau du coude est le deuxième syndrome compressif le plus fréquent des nerfs périphériques. La chirurgie des nerfs périphériques consiste dans une décompression nerveuse et est caractérisée par un suivi post¬opératoire parfois très douloureux avec des douleurs qui peuvent chroniciser si insuffisamment traitées. Le traitement chirurgical de décompression nerveuse se fait traditionnellement sous anesthésie générale ou régionale. Une analgésie post-opératoire plus efficace et durable avec moindre risque de chronicisation avait justifié ce choix jusqu'à ce jour. Grâce au développement de la chirurgie ambulatoire ces dernières années, un grand nombre d'interventions chirurgicales au niveau de la main sont effectués sous anesthésie locale. Au vu d'une meilleure connaissance de cette technique d'anesthésie, son rôle dans la chirurgie des nerfs périphériques a été remis en question. Alors que plusieurs études ont démontré que l'anesthésie locale est aussi efficace que l'anesthésie générale et régionale au sujet de la chirurgie du tunnel carpien, son utilisation pour la chirurgie du nerf ulnaire reste peu connue. La raison de l'hésitation à l'utilisation de l'anesthésie locale pour le traitement du tunnel ulnaire est due au fait que dans plus de la moitié des cas, une simple décompression n'est pas suffisante et qu'il est souvent nécessaire de transposer le nerf ulnaire devant l'épicondyle ulnaire. La seule publication disponible au sujet de l'utilisation de l'anesthésie locale dans le traitement du tunnel ulnaire considère comme irréalisable d'utiliser cette méthode dans le cas d'une transposition. Malgré cette mise en garde, nous avons, depuis plusieurs années, des excellents résultats avec la transposition du nerf ulnaire sous anesthésie locale. Avec le but d'objectiver notre expérience dans ce domaine nous avons souhaité analyser nos résultats de façon rétrospective avec particulière attention aux douleurs post-opératoires et à la satisfaction des patients. Les dossiers de cinquante patients Consécutifs (26F, 24M) opérés par le même chirurgien dans notre service de 2002 à 2012 ont été analysés rétrospectivement. Les critères suivants ont été récoltés: l'âge du patient, la profession, la main dominante, les détails des techniques opératoires utilisées, le type d'anesthésie, l'intensité du suivi ainsi que les complications, le niveau de douleur dans l'immédiat post-opératorie ainsi que à une année de l'intervention. Les patients ont été divisés en 4 groupes: les opérés sous anesthésie générale avec transposition du nerf (n=17) ou sans transposition (n=10) et les opérés sous anesthésie locale avec transposition (n=12) ou sans transposition (n=11). Au premier jour la douleur était comparable dans tous les groupes. A une semaine, elle était deux fois plus importante lorsque la transposition avait été réalisée sous anesthésie générale par rapport à si une anesthésie locale avait été effectuée (p=0.03). La satisfaction s'est révélée plus élevée mais non significative chez les patients opérés sous anesthésie locale. Ces derniers étaient significativement plus enclins à répéter la chirurgie comparé a ceux opérés sous anesthésie générale (p=0.04). En conclusion, les résultats de cette étude suggèrent que l'anesthésie locale est au moins autant efficace que l'anesthésie générale en termes de complications et de douleurs post-opératoires indépendamment du fait qu'une transposition nerveuse soit effectuée ou pas. Un meilleur contrôle des douleurs à une semaine post-opératoire a contribué à une haute satisfaction des patients de notre étude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wealth of literature has provided evidence that reactive tissue at the site of CNS injury is rich in chondroitin sulfate proteoglycans which may contribute to the non-permissive nature of the CNS. We have recently demonstrated using a murine model of human brachial plexus injury that the chondroitin sulfate proteoglycans Neurocan and Brevican are differentially expressed by two subsets of astrocytes in the spinal cord dorsal root entry zone (DREZ) following dorsal root lesion (Beggah et al., Neuroscience 133: 749-762, 2005). However, direct evidence for a growth-inhibitory role of these proteoglycans in vivo is still lacking. We therefore performed dorsal root lesion (rhizotomy) in mice deficient in both Neurocan and Brevican. Rhizotomy in these animals resulted in no significant increase in the number of sensory fibres regenerating through the DREZ compared to genetically matched controls. Likewise, a conditioning peripheral nerve lesion prior to rhizotomy, which increases the intrinsic growth capacity of sensory neurons, enhanced growth to the same extent in transgenic and control mice, indicating that absence of these proteoglycans alone is not sufficient to further promote entry into the spinal cord. In contrast, when priming of the median nerve was performed at a clinically relevant time, i.e. 7 weeks post-rhizotomy, the growth of a subpopulation of sensory axons across the DREZ was facilitated in Neurocan/Brevican-deficient, but not in control animals. This demonstrates for the first time that (i) Neurocan and/or Brevican contribute to the non-permissive environment of the DREZ several weeks after lesion and that (ii) delayed stimulation of the growth program of sensory neurons can facilitate regeneration across the DREZ provided its growth-inhibitory properties are attenuated. Post-injury enhancement of the intrinsic growth capacity of sensory neurons combined with removal of inhibitory chondroitin sulfate proteoglycans may therefore help to restore sensory function and thus attenuate the chronic pain resulting from human brachial plexus injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To assess the accuracy of high-resolution (HR) magnetic resonance imaging (MRI) in diagnosing early-stage optic nerve (ON) invasion in a retinoblastoma cohort. METHODS: This IRB-approved, prospective multicenter study included 95 patients (55 boys, 40 girls; mean age, 29 months). 1.5-T MRI was performed using surface coils before enucleation, including spin-echo unenhanced and contrast-enhanced (CE) T1-weighted sequences (slice thickness, 2 mm; pixel size <0.3 × 0.3 mm(2)). Images were read by five neuroradiologists blinded to histopathologic findings. ROC curves were constructed with AUC assessment using a bootstrap method. RESULTS: Histopathology identified 41 eyes without ON invasion and 25 with prelaminar, 18 with intralaminar and 12 with postlaminar invasion. All but one were postoperatively classified as stage I by the International Retinoblastoma Staging System. The accuracy of CE-T1 sequences in identifying ON invasion was limited (AUC = 0.64; 95 % CI, 0.55 - 0.72) and not confirmed for postlaminar invasion diagnosis (AUC = 0.64; 95 % CI, 0.47 - 0.82); high specificities (range, 0.64 - 1) and negative predictive values (range, 0.81 - 0.97) were confirmed. CONCLUSION: HR-MRI with surface coils is recommended to appropriately select retinoblastoma patients eligible for primary enucleation without the risk of IRSS stage II but cannot substitute for pathology in differentiating the first degrees of ON invasion. KEY POINTS: • HR-MRI excludes advanced optic nerve invasion with high negative predictive value. • HR-MRI accurately selects patients eligible for primary enucleation. • Diagnosis of early stages of optic nerve invasion still relies on pathology. • Several physiological MR patterns may mimic optic nerve invasion.