775 resultados para the development of intellectual capital
Resumo:
Since the birth of the European Union on 1957, the development of a single market through the integration of national freight transport networks has been one of the most important points in the European Union agenda. Increasingly congested motorways, rising oil prices and concerns about environment and climate change require the optimization of transport systems and transport processes. The best solution should be the intermodal transport, in which the most efficient transport options are used for the different legs of transport. This thesis examines the problem of defining innovative strategies and procedures for the sustainable development of intermodal freight transport in Europe. In particular, the role of maritime transport and railway transport in the intermodal chain are examined in depth, as these modes are recognized to be environmentally friendly and energy efficient. Maritime transport is the only mode that has kept pace with the fast growth in road transport, but it is necessary to promote the full exploitation of it by involving short sea shipping as an integrated service in the intermodal door-to-door supply chain and by improving port accessibility. The role of Motorways of the Sea services as part of the Trans-European Transport Network is is taken into account: a picture of the European policy and a state of the art of the Italian Motorways of the Sea system are reported. Afterwards, the focus shifts from line to node problems: the role of intermodal railway terminals in the transport chain is discussed. In particular, the last mile process is taken into account, as it is crucial in order to exploit the full capacity of an intermodal terminal. The difference between the present last mile planning models of Bologna Interporto and Verona Quadrante Europa is described and discussed. Finally, a new approach to railway intermodal terminal planning and management is introduced, by describing the case of "Terminal Gate" at Verona Quadrante Europa. Some proposals to favour the integrate management of "Terminal Gate" and the allocation of its capacity are drawn up.
Resumo:
In this dissertation the pyrolytic conversion of biomass into chemicals and fuels was investigated from the analytical point of view. The study was focused on the liquid (bio-oil) and solid (char) fractions obtainable from biomass pyrolysis. The drawbacks of Py-GC-MS described so far were partially solved by coupling different analytical configurations (Py-GC-MS, Py-GC-MIP-AED and off-line Py-SPE and Py-SPME-GC-MS with derivatization procedures). The application of different techniques allowed a satisfactory comparative analysis of pyrolysis products of different biomass and a high throughput screening on effect of 33 catalysts on biomass pyrolysis. As the results of the screening showed, the most interesting catalysts were those containing copper (able to reduce the high molecular weight fraction of bio-oil without large yield decrease) and H-ZSM-5 (able to entirely convert the bio-oil into “gasoline like” aromatic products). In order to establish the noxious compounds content of the liquid product, a clean-up step was included in the Py-SPE procedure. This allowed to investigate pollutants (PAHs) generation from pyrolysis and catalytic pyrolysis of biomass. In fact, bio-oil from non-catalytic pyrolysis of biomass showed a moderate PAHs content, while the use of H-ZSM-5 catalyst for bio-oil up-grading determined an astonishing high production of PAHs (if compared to what observed in alkanes cracking), indicating an important concern in the substitution fossil fuel with bio-oil derived from biomass. Moreover, the analytical procedures developed in this thesis were directly applied for the detailed study of the most useful process scheme and up-grading route to chemical intermediates (anhydrosugars), transportation fuels or commodity chemicals (aromatic hydrocarbons). In the applied study, poplar and microalgae biomass were investigated and overall GHGs balance of pyrolysis of agricultural residues in Ravenna province was performed. A special attention was put on the comparison of the effect of bio-char different use (fuel or as soil conditioner) on the soil health and GHGs emissions.
Resumo:
This PhD work was aimed to design, develop, and characterize gelatin-based scaffolds, for the repair of defects in the muscle-skeletal system. Gelatin is a biopolymer widely used for pharmaceutical and medical applications, thanks to its biodegradability and biocompatibility. It is obtained from collagen via thermal denaturation or chemical-physical degradation. Despite its high potential as biomaterial, gelatin exhibits poor mechanical properties and a low resistance in aqueous environment. Crosslinking treatment and enrichment with reinforcement materials are thus required for biomedical applications. In this work, gelatin based scaffolds were prepared following three different strategies: films were prepared through the solvent casting method, electrospinning technique was applied for the preparation of porous mats, and 3D porous scaffolds were prepared through freeze-drying. The results obtained on films put into evidence the influence of pH, crosslinking and reinforcement with montmorillonite (MMT), on the structure, stability and mechanical properties of gelatin and MMT/gelatin composites. The information acquired on the effect of crosslinking in different conditions was utilized to optimize the preparation procedure of electrospun and freeze-dried scaffolds. A successful method was developed to prepare gelatin nanofibrous scaffolds electrospun from acetic acid/water solution and stabilized with a non-toxic crosslinking agent, genipin, able to preserve their original morphology after exposure to water. Moreover, the co-electrospinning technique was used to prepare nanofibrous scaffolds at variable content of gelatin and polylactic acid. Preliminary in vitro tests indicated that the scaffolds are suitable for cartilage tissue engineering, and that their potential applications can be extended to cartilage-bone interface tissue engineering. Finally, 3D porous gelatin scaffolds, enriched with calcium phosphate, were prepared with the freeze-drying method. The results indicated that the crystallinity of the inorganic phase influences porosity, interconnectivity and mechanical properties. Preliminary in vitro tests show good osteoblast response in terms of proliferation and adhesion on all the scaffolds.
On the development of novel cocaine-analogues for in vivo imaging of the dopamine transporter status
Resumo:
The present thesis is concerned with the development of novel cocaine-derived dopamine transporter ligands for the non-invasive exploration of the striatal and extra-striatal dopamine transporter (DAT) in living systems. The presynaptic dopamine transporter acquires an important function within the mediation of dopaminergic signal transduction. Its availability can serve as a measure for the overall integrity of the dopaminergic system. The DAT is upregulated in early Parkinson’s disease (PD), resulting in an increased availability of DAT-binding sites in the striatal DAT domains. Thereby, DAT imaging has become an important routine diagnostic tool for the early diagnosis of PD in patients, as well as for the differentiation of PD from symptomatically similar medical conditions. Furthermore, the dopaminergic system is involved in a variety of psychiatric diseases. In this regard, DAT-selective imaging agents may provide detailed insights into the scientific understanding of the biochemical background of both, the progress as well as the origins of the symptoms. DAT-imaging may also contribute to the determination of the dopaminergic therapeutic response for a given medication and thereby contribute to more convenient conditions for the patient. From an imaging point of view, the former demands a high availability of the radioactive probe to facilitate broad application of the modality, whereas the latter profits from short-lived probes, suitable for multi-injection studies. Therefore, labelling with longer-lived 18F-fluoride and in particular the generator nuclide 68Ga is worthwhile for clinical routine imaging. In contrast, the introduction of a 11C-label is a prerequisite for detailed scientific studies of neuronal interactions. The development of suitable DAT-ligands for medical imaging has often been complicated by the mixed binding profile of many compounds that that interact with the DAT. Other drawbacks have included high non-specific binding, extensive metabolism and slow accumulation in the DAT-rich brain areas. However, some recent examples have partially overcome the mentioned complications. Based on the structural speciality of these leads, novel ligand structures were designed and successfully synthesised in the present work. A structure activity relationship (SAR) study was conducted wherein the new structural modifications were examined for their influence on DAT-affinity and selectivity. Two of the compounds showed improvements in in vitro affinity for the DAT as well as selectivity versus the serotonin transporter (SERT) and norepinephrine transporter (NET). The main effort was focussed on the high-affinity candidate PR04.MZ, which was subsequently labelled with 18F and 11C in high yield. An initial pharmacological characterisation of PR04.MZ in rodents revealed highly specific binding to the target brain structures. As a result of low non-specific binding, the DAT-rich striatal area was clearly visualised by autoradiography and µPET. Furthermore, the radioactivity uptake into the DAT-rich brain regions was rapid and indicated fast binding equilibrium. No radioactive metabolite was found in the rat brain. [18F]PR04.MZ and [11C]PR04.MZ were compared in the primate brain and the plasma metabolism was studied. It was found that the ligands specifically visualise the DAT in high and low density in the primate brain. The activity uptake was rapid and quantitative evaluation by Logan graphical analysis and simplified reference tissue model was possible after a scanning time of 30 min. These results further reflect the good characteristics of PR04.MZ as a selective ligand of the neuronal DAT. To pursue 68Ga-labelling of the DAT, initial synthetic studies were performed as part of the present thesis. Thereby, a concept for the convenient preparation of novel bifunctional chelators (BFCs) was developed. Furthermore, the suitability of novel 1,4,7-triazacyclononane based N3S3-type BFCs for biomolecule-chelator conjugates of sufficient lipophilicity for the penetration of the blood-brain-barrier was elucidated.
Resumo:
Stylolites are rough paired surfaces, indicative of localized stress-induced dissolution under a non-hydrostatic state of stress, separated by a clay parting which is believed to be the residuum of the dissolved rock. These structures are the most frequent deformation pattern in monomineralic rocks and thus provide important information about low temperature deformation and mass transfer. The intriguing roughness of stylolites can be used to assess amount of volume loss and paleo-stress directions, and to infer the destabilizing processes during pressure solution. But there is little agreement on how stylolites form and why these localized pressure solution patterns develop their characteristic roughness.rnNatural bedding parallel and vertical stylolites were studied in this work to obtain a quantitative description of the stylolite roughness and understand the governing processes during their formation. Adapting scaling approaches based on fractal principles it is demonstrated that stylolites show two self affine scaling regimes with roughness exponents of 1.1 and 0.5 for small and large length scales separated by a crossover length at the millimeter scale. Analysis of stylolites from various depths proved that this crossover length is a function of the stress field during formation, as analytically predicted. For bedding parallel stylolites the crossover length is a function of the normal stress on the interface, but vertical stylolites show a clear in-plane anisotropy of the crossover length owing to the fact that the in-plane stresses (σ2 and σ3) are dissimilar. Therefore stylolite roughness contains a signature of the stress field during formation.rnTo address the origin of stylolite roughness a combined microstructural (SEM/EBSD) and numerical approach is employed. Microstructural investigations of natural stylolites in limestones reveal that heterogeneities initially present in the host rock (clay particles, quartz grains) are responsible for the formation of the distinctive stylolite roughness. A two-dimensional numerical model, i.e. a discrete linear elastic lattice spring model, is used to investigate the roughness evolving from an initially flat fluid filled interface induced by heterogeneities in the matrix. This model generates rough interfaces with the same scaling properties as natural stylolites. Furthermore two coinciding crossover phenomena in space and in time exist that separate length and timescales for which the roughening is either balanced by surface or elastic energies. The roughness and growth exponents are independent of the size, amount and the dissolution rate of the heterogeneities. This allows to conclude that the location of asperities is determined by a polimict multi-scale quenched noise, while the roughening process is governed by inherent processes i.e. the transition from a surface to an elastic energy dominated regime.rn
Resumo:
With the increasing importance that nanotechnologies have in everyday life, it is not difficult to realize that also a single molecule, if properly designed, can be a device able to perform useful functions: such a chemical species is called chemosensor, that is a molecule of abiotic origin that signals the presence of matter or energy. Signal transduction is the mechanism by which an interaction of a sensor with an analyte yields a measurable form of energy. When dealing with the design of a chemosensor, we need to take into account a “communication requirement” between its three component: the receptor unit, responsible for the selective analyte binding, the spacer, which controls the geometry of the system and modulates the electronic interaction between the receptor and the signalling unit, whose physico-chemical properties change upon complexation. A luminescent chemosensor communicates a variation of the physico-chemical properties of the receptor unit with a luminescence output signal. This thesis work consists in the characterization of new molecular and nanoparticle-based system which can be used as sensitive materials for the construction of new optical transduction devices able to provide information about the concentration of analytes in solution. In particular two direction were taken. The first is to continue in the development of new chemosensors, that is the first step for the construction of reliable and efficient devices, and in particular the work will be focused on chemosensors for metal ions for biomedical and environmental applications. The second is to study more efficient and complex organized systems, such as derivatized silica nanoparticles. These system can potentially have higher sensitivity than molecular systems, and present many advantages, like the possibility to be ratiometric, higher Stokes shifts and lower signal-to-noise ratio.
Resumo:
Italy has a preeminent rank in kiwifruit industry, being the first exporter and the second largest producer after China. However, in the last years kiwifruit yields and the total cultivated area considerably decreased, due to the pandemic spread of the bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa). Several climatic conditions and cultural practices affect the development of the bacterial canker. This research work focused on the impact of agricultural practices and microclimate conditions on the incidence and epidemiology of Psa in the orchard. Therefore, the effect of fertilization, irrigation, use of bio-regulators, rootstock, training system and pruning were examined. The effect of different tunnel systems was analyzed as well, to study the plant-pathogen interaction. Considering the importance of insects as vectors in other pathosystems, the role of Metcalfa pruinosa in the spread of the bacterial canker was investigated in controlled conditions. In addition, quality and storage properties of fruits from infected plants were assessed. The study of all these aspects of the agronomic practices is useful to define a strategy to limit the bacterial diffusion in the orchard. Overall, excess nitrogen fertilization, water stress, stagnant water supplies, pruning before summer and the high number of Metcalfa pruinosa increased the Psa incidence. In contrast, tunnel covers may be useful for the control of the disease, with special attention to the kind of material.
Resumo:
Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an overview of the development of the field over the last two decades.
Resumo:
The adhesion molecule P-selectin glycoprotein ligand (PSGL)-1 has been suggested to be involved in the immunopathogenesis of multiple sclerosis (MS). However, in C57BL/6 mice PSGL-1 was found to be dispensible for the development of MOG(aa35-55)-induced experimental autoimmune encephalomyelitis (EAE), an animal model for MS. To study, if involvement of PSGL-1 to EAE pathogenesis can be observed in another common mouse model, we backcrossed PSGL-1(-/-) mice for at least 12 generations into the SJL/J background and compared PLP(aa139-151) induced EAE in PSGL-1(-/-) SJL/J mice versus wild-type SJL/J mice. Here, we demonstrate that PSGL-1(-/-) SJL/J mice exhibited EAE pathogenesis indistinguishable from wild-type SJL/J mice. Our present study underscores and emphasizes previous observations that PSGL-1 is dispensible for EAE pathogenesis.
Resumo:
Chronic rejection (CR) remains an unsolved hurdle for long-term heart transplant survival. The effect of cold ischemia (CI) on progression of CR and the mechanisms resulting in functional deficit were investigated by studying gene expression, mitochondrial function, and enzymatic activity. Allogeneic (Lew F344) and syngeneic (Lew Lew) heart transplantations were performed with or without 10 h of CI. After evaluation of myocardial contraction, hearts were excised at 2, 10, 40, and 60 days for investigation of vasculopathy, gene expression, enzymatic activities, and mitochondrial respiration. Gene expression studies identified a gene cluster coding for subunits of the mitochondrial electron transport chain regulated in response to CI and CR. Myocardial performance, mitochondrial function, and mitochondrial marker enzyme activities declined in all allografts with time after transplantation. These declines were more rapid and severe in CI allografts (CR-CI) and correlated well with progression of vasculopathy and fibrosis. Mitochondria related gene expression and mitochondrial function are substantially compromised with the progression of CR and show that CI impacts on progression, gene profile, and mitochondrial function of CR. Monitoring mitochondrial function and enzyme activity might allow for earlier detection of CR and cardiac allograft dysfunction.
Resumo:
A prospective, randomized, placebo-controlled study was conducted in a baboon model to determine if a thiazolidinedione agonist of peroxisome proliferator-activated receptor-gamma, pioglitazone, can impede the development of endometriosis. Endometriosis was induced using laparoscopic, intrapelvic injection of eutopic menstrual endometrium, previously incubated with placebo or pioglitazone for 30 min, in 12 female baboons with a normal pelvis that had undergone at least one menstrual cycle since the time of captivity. At this point, the 12 baboons were randomized into two groups and treated from the day of induction. They received either PBS tablets (n = 6, placebo control, placebo tablets once a day by mouth) or pioglitazone (n = 6, test drug, 7.5 mg by mouth each day). A second and final laparoscopy was performed in the baboons to record the extent of endometriotic lesions between 24 and 42 d after induction (no difference in length of treatment between the two groups, P = 0.38). A videolaparoscopy was performed to document the number and surface area of endometriotic lesions. The surface area and volume of endometriotic lesions were significantly lower in pioglitazone treated baboons than the placebo group (surface area, 48.6 vs. 159.0 mm(2), respectively, P = 0.049; vol, 23.7 vs. 131.8 mm(3), respectively, P = 0.041). The surface area (3.5 vs. 17.8 mm(2), P = 0.017, pioglizatone vs. placebo) and overall number (1.5 vs. 9.5, P = 0.007, pioglizatone vs. placebo) of red lesions were lower in the pioglitazone group. A peroxisome proliferator-activated receptor-gamma ligand, pioglitazone, effectively reduced the initiation of endometriotic disease in the baboon endometriosis model. Using this animal model, we have shown that thiazolidinedione is a promising drug for preventive treatment of endometriosis.