988 resultados para sustainable retirement villages
Resumo:
This paper reflects on the motivation, method and effectiveness of teaching leadership and organisational change to graduate engineers. Delivering progress towards sustainable development requires engineers who are aware of pressing global issues (such as resource depletion, climate change, social inequity and an interdependent economy) since it is they who deliver the goods and services that underpin society within these constraints. They also must understand how to implement change in the organisations within which they will work. In recognition of this fact the Cambridge University MPhil in Engineering for Sustainable Development has focussed on educating engineers to become effective change agents in their professional field with the confidence to challenge orthodoxy in adopting traditional engineering solutions. This paper reflects on ten years of delivering a special module to review how teaching change management and leadership aspects of the programme have evolved and progressed over that time. As the students who embark on this professional practice have often extensive experience as practising engineers and scientists, many have already learned the limitations of their technical background when solving complex problems. Students often join the course recognising their need to broaden their knowledge of relevant cross-disciplinary skills. The programme offers an opportunity for these early to mid-career engineers to explore an ethical and value-based approach to bringing about effective change in their particular sectors and organisations. This is achieved through action learning assignments in combination with reflections on the theory of change to enable students to equip themselves with tools that help them to be effective in making their professional and personal life choices. This paper draws on feedback gathered from students during their participation on the programme and augments this with alumni reflections gathered some years after their graduation. These professionals are able to look back on their experience of the taught components and reflect on how they have been able to apply this key learning in their subsequent careers. Copyright © 2012 September.
Resumo:
This paper investigates 'future-proofing' as an unexplored yet all-important aspect in the design of low-energy dwellings. It refers particularly to adopting lifecycle thinking and accommodating risks and uncertainties in the selection of fabric energy efficiency measures and low or zero-carbon technologies. Based on a conceptual framework for future-proofed design, the paper first presents results from the analysis of two 'best practice' housing developments in England; i.e., North West Cambridge in Cambridge and West Carclaze and Baal in St. Austell, Cornwall. Second, it examines the 'Energy and CO2 Emissions' part of the Code for Sustainable Homes to reveal which design criteria and assessment methods can be practically integrated into this established building certification scheme so that it can become more dynamic and future-oriented.Practical application: Future-proofed construction is promoted implicitly within the increasingly stringent building regulations; however, there is no comprehensive method to readily incorporate futures thinking into the energy design of buildings. This study has a three-fold objective of relevance to the building industry:Illuminating the two key categories of long-term impacts in buildings, which are often erroneously treated interchangeably:- The environmental impact of buildings due to their long lifecycles.- The environment's impacts on buildings due to risks and uncertainties affecting the energy consumption by at least 2050. This refers to social, technological, economic, environmental and regulatory (predictable or unknown) trends and drivers of change, such as climate uncertainty, home-working, technology readiness etc.Encouraging future-proofing from an early planning stage to reduce the likelihood of a prematurely obsolete building design.Enhancing established building energy assessment methods (certification, modelling or audit tools) by integrating a set of future-oriented criteria into their methodologies. © 2012 The Chartered Institution of Building Services Engineers.
Resumo:
In this work, we investigate a number of fuel assembly design options for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on axially heterogeneous fuel assembly structure in order to improve fertile to fissile conversion ratio. One of the main assumptions of the current study was to restrict the fuel assembly geometry to a single axial fissile zone "sandwiched" between two fertile blanket zones. The main objective was to study the effect of the most important design parameters, such as dimensions of fissile and fertile zones and average void fraction, on the net breeding of 233U. The main design challenge in this respect is that the fuel breeding potential is at odds with axial power peaking and therefore limits the maximum achievable core power rating. The calculations were performed with BGCore system, which consists of MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly with reflective radial boundaries was modeled applying simplified restrictions on maximum central line fuel temperature and Critical Power Ratio. It was found that axially heterogeneous fuel assembly design with single fissile zone can potentially achieve net breeding. In this case however, the achievable core power density is roughly one third of the reference BWR core.
Resumo:
The feasibility of a conventional PWR fuel cycle with complete recycling of TRU elements in the same reactor is investigated. A new Combined Non-fertile and Uranium (CONFU) fuel assembly where about 20% of the uranium fuel pins are replaced with fertile free fuel (FFF) hosting TRU generated in the previous cycle is proposed. In this sustainable fuel cycle based on the CONFU fuel assembly concept, the amount and radiotoxicity of the nuclear waste can be significantly reduced in comparison with the conventional once-through UO 2 fuel cycle. It is shown that under the constraints of acceptable power peaking limits, the CONFU assembly exhibits negative reactivity feedback coefficients comparable in values to those of the reference UO2 fuel. Moreover, the effective delayed neutron fraction is about the same as for UO2-fueled cores. Therefore, feasibility of the PWR core operation and control with complete TRU recycle has been shown in principle. However, gradual build up of small amounts of Cm and Cf challenges fuel reprocessing and fabrication due to the high spontaneous fissions rates of these nuclides and heat generation by some Pu, Am, and Cm isotopes. Feasibility of the processing steps becomes more attainable if the time between discharge and reprocessing is 20 years or longer. The implications for the entire fuel cycle will have to be addressed in future studies.