963 resultados para strontium oxalate
Resumo:
Ba0.5Sr0.5TiO3 (BST) thin-film capacitor structures with various thicknesses, (50-1200 nm) and different strain conditions (on lanthanum strontium cobalt oxide La0.5Sr0.5CoO3 and strontium ruthenate SrRuO3 buffer layers) were made using pulsed laser deposition, and characterized by x-ray diffraction. The out-of-plane lattice parameter was followed as a function of temperature within the 100-300 K temperature interval. The phase sequence (cubic-tetragonal-orthorhombic-rhombohedral) known to exist in the bulk analog is shown to be strongly affected by both the stress conditions imposed by the buffer layer and the thickness of the BST film itself. Thus, no phase transition was found for the in-plane compressed BST films. On the stress-free BST films, on the contrary, more phase transitions were observed. It appeared that the complexity of structural phase transitions increased as the film thickness in this system was reduced.
Resumo:
Experimental studies are reported concerning the importance of interfacial capacitance (including electrode screening, space-charge layers, and/or chemically discrete dead layers). on domain switching behaviour in thin films of ferroelectric lead zirconate-titanate (PZT), strontium bismuth tantalate (SBT), and barium strontium titanate (BST). Emphasis is placed upon studies at applied field values very near the coercive field E, asymmetry in fatigue for positive and negative polarity coercive fields, and in the case of BST, of the coexistence of ferroelectric and paraelectric phases Studies of dielectric loss show important correlations between tan 6 and fatigue (polarization decrease) as a function of bipolar switching cycles N. This is a priori not obvious, since the former is a linear response and the latter, a nonlinear response. Modelling of enlarged interfacial,space-charge layers in PZT films and chemically distinct dead (paraelectric) layers in BST films shows contradictory tendencies of coercive-voltage changes with the growth of passive layers.
Resumo:
We have conducted a broad survey of switching behavior in thin films of a range of ferroelectric materials, including some materials that are not typically considered for FeRAM applications, and are hence less studied. The materials studied include: strontium bismuth tantalate (SBT), barium strontium titanate (BST), lead zicronate titanate (PZT), and potassium nitrate (KNO3). Switching in ferroelectric thin films is typically considered to occur by domain nucleation and growth. We discuss two models of frequency dependence of coercive field, the Ishisbashi-Orihara theory where the limiting step is domain growth and the model of Du and Chen where the limiting step is nucleation. While both models fit the data fairly well the temperature dependence of our results on PZT and BST suggest that the nucleation model of Du and Chen is more appropriate for the experimental results that we have obtained.
Resumo:
The sulfur tolerance of a barium-containing NOx storage/reduction trap was investigated using infrared analysis. It was confirmed that barium carbonate could be replaced by barium sulfate by reaction with low concentrations of sulfur dioxide (50 ppm) in the presence of large concentrations of carbon dioxide (10%) at temperatures up to 700 degreesC. These sulfates could at least be partially removed by switching to hydrogen-rich conditions at elevated temperatures. Thermodynamic calculations were used to evaluate the effects of gas composition and temperature on the various reactions of barium sulfate and carbonate under oxidizing and reducing conditions. These calculations clearly showed that if, under a hydrogen-rich atmosphere, carbon dioxide is included as a reactant and barium carbonate as a product then barium sulfate can be removed by reaction with carbon dioxide at a much lower temperature than is possible by decomposition to barium oxide. It was also found that if hydrogen sulfide was included as a product of decomposition of barium sulfate instead of sulfur dioxide then the temperature of reaction could be significantly lowered. Similar calculations were conducted using a selection of other alkaline-earth and alkali metals. In this case calculations were simulated in a gas mixture containing carbon monoxide, hydrogen and carbon dioxide with partial pressures similar to those encountered in real exhausts during switches to rich conditions. The results indicated that there are metals such as lithium and strontium with less stable sulfates than barium, which may also possess sufficient NOx storage capacity to give sulfur-tolerant NOx traps.
Resumo:
High-quality luminescent thin films of strontium sulphide (SrS) with excellent stoichiometry have been grown by pulsed-laser deposition. The crystallinity, stoichiometry and cathodoluminescence (CL) have been investigated for the films deposited onto two differently coated glass substrates. Furthermore the importance of post-deposition annealing has been studied. SrS thin films grown at 450 degrees C onto glass substrates coated with tin-doped indium oxide show good crystallinity, with a preferred orientation along the (200) axis. Cerium-doped SrS (SrS:Ce) gives a strong blue CL output at 400 nm. Energy-dispersive X-ray spectroscopy shows that the films are stoichiometric and that the stoichiometry is controllable by varying deposition parameters.
Resumo:
In trematodes, there is a family of proteins which combine EF-hand-containing domains with dynein light chain (DLC)-like domains. A member of this family from the liver fluke, Fasciola hepatica-FhCaBP4-has been identified and characterised biochemically. FhCaBP4 has an N-terminal domain containing two imperfect EF-hand sequences and a C-terminal dynein light chain-like domain. Molecular modelling predicted that the two domains are joined by a flexible linker. Native gel electrophoresis demonstrated that FhCaBP4 binds to calcium, manganese, barium and strontium ions, but not to magnesium or zinc ions. The hydrophobic, fluorescent probe 8-anilinonaphthalene-1-sulphonate bound more tightly to FhCaBP4 in the presence of calcium ions. This suggests that the protein undergoes a conformational change on ion binding which increases the number of non-polar residues on the surface. FhCaBP4 was protected from limited proteolysis by the calmodulin antagonist W7, but not by trifluoperazine or praziquantel. Protein-protein cross-linking experiments showed that FhCaBP4 underwent calcium ion-dependent dimerisation. Since DLCs are commonly dimeric, it is likely that FhCaBP4 dimerises through this domain. The molecular model reveals that the calcium ion-binding site is located close to a key sequence in the DLC-like domain, suggesting a plausible mechanism for calcium-dependent dimerisation.
Resumo:
Studies demonstrate the active and passive capability of lichens to inhibit or retard the weathering of calcareous surfaces. Lichen coverage may actively protect a surface through shielding by the thallus and the binding and waterproofing of the rock surface and subsurface by fungal hyphae. Passive protection of rock surfaces may be induced by the formation of an insoluble encrustation, such as calcium oxalate, at the lichen-rock interface. Recent research suggests that the decay of hyphae, induced by changes in microenvironmental conditions, necrosis, parasitism or the natural physiological traits of particular lichen species, may expose a chemically and physically weakened substrate to dissolution triggering relatively rapid weathering-related surface lowering. Consequently, certain epilithic crustose and endolithic lichens may induce a period of surface stability throughout the course of their lifespan, followed by a phase of instability and rapid episodic microtopographical evolution after death and decay. A series of conceptual models is proposed to illustrate this idea over short (single lichen lifespan) and long (multiple lichen lifespans) timescales. The models suggest that the microscale biogeomorphological system of lichen-rock interaction is underpinned by nonlinear dynamical system theory as it exhibits dynamical instability and is consequently difficult to predict over a long timescale. Dominance by biodeterioration or bioprotection may be altered by changes in lichen species or in environmental conditions over time.
Resumo:
A DNA sequence encoding a protein with predicted EF-hand and dynein light chain binding domains was identified in a Fasciola hepatica EST library. Sequence analysis of the encoded protein revealed that the most similar known protein was the Fasciola gigantica protein FgCaBP3 and so this newly identified protein was named FhCaBP3. Molecular modelling of FhCaBP3 predicted a highly flexible N-terminal region, followed by a domain containing two EF-hand motifs the second of which is likely to be a functioning divalent ion binding site. The C-terminal domain of the protein contains a dynein light chain like region. Interestingly, molecular modelling predicts that calcium ion binding to the N-terminal domain destabilises the ß-sheet structure of the C-terminal domain. FhCaBP3 can be expressed in, and purified from, Escherichia coli. The recombinant protein dimerises and the absence of calcium ions appeared to promote dimerisation. Native gel shift assays demonstrated that the protein bound to calcium and manganese ions, but not to magnesium, barium, zinc, strontium, nickel, copper or cadmium ions. FhCaBP3 interacted with the calmodulin antagonists trifluoperazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine as well as the myosin regulatory light chain-binding drug praziquantel. Despite sequence and structural similarities to other members of the same protein family from F. hepatica, FhCaBP3 has different biochemical properties to the other well characterised family members, FH22 and FhCaBP4. This suggests that each member of this trematode calcium-binding family has discrete functional roles within the organism.
Resumo:
ABSTRACT: Bone-seeking radionuclides including samarium-153 ethylene diamine tetramethylene phosphonate and strontium-89 have been used for decades in the palliation of pain from bone metastases especially from prostate cancer. Emerging evidence of improved survival in metastatic castration-resistant prostate cancer (CRPC) with the first-in-class a-radionuclide, radium-223 (Ra) has rekindled interest in the role of bone-seeking radionuclide therapy.We review the literature for randomized controlled trials of bone-seeking radionuclides and explore some of the issues regarding the optimal use of these agents. In particular, we discuss dose, dose rate, radiobiology, and quality of radiation and postulate on potential future directions in particular combination schedules. ß-Emitting, bone-seeking radionuclides have proven ability to control pain in prostate cancer metastatic to bone with pain response rates in the order of 60% to 70% when used as single agents. Most of the published trials were underpowered to detect differences in survival; however, there is evidence of the potential for disease modification when these agents are used in combination with chemotherapy or in multiple cycles.Data from the recent phase III ALSYMPCA trial that compared Ra to placebo in symptomatic CRPC demonstrate a significant improvement in median overall survival of 3.6 months for patients with symptomatic CRPC metastatic to bone treated with 6 cycles of the a-emitting radionuclide Ra compared with placebo. The success of Ra in improving survival in CRPC will lead this agent to become part of the treatment paradigm for this disease, and with such an excellent safety profile, Ra has huge potential in combination strategies as well as for use earlier in the natural history of metastatic prostate cancer.
Resumo:
Co3O4, Fe2O3 and a mixture of the two oxides Co–Fe (molar ratio of Co3O4/Fe2O3 = 0.67 and atomic ratio of Co/Fe = 1) were prepared by the calcination of cobalt oxalate and/or iron oxalate salts at 500 °C for 2 h in static air using water as a solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O3 on the catalytic behaviour. The reforming activity over Fe2O3, while initially high, underwent fast deactivation. In comparison, over the Co–Fe catalyst both the H2 yield and stability were higher than that found over the pure Co3O4 or Fe2O3 catalysts. DRIFTS-MS studies under the reaction feed highlighted that the Co–Fe catalyst had increased amounts of adsorbed OH/water; similar to Fe2O3. Increasing the amount of reactive species (water/OH species) adsorbed on the Co–Fe catalyst surface is proposed to facilitate the steam reforming reaction rather than decomposition reactions reducing by-product formation and providing a higher H2 yield.
Resumo:
In this paper we investigate the piezoelectric properties of PbTiO(3) thin films grown by pulsed laser deposition with piezoresponse force microscopy and transmission electron microscopy. The as-grown films exhibit an upward polarization, inhomogeneous distribution of piezoelectric characteristics concerning local coercive fields, and piezoelectric coefficient. In fact, the data obtained reveal imprints during piezoresponse force microscopy measurements, nonlinearity in the piezoelectric deformation, and limited polarization reversal. Moreover, transmission electron microscopy shows the presence of defects near the film/substrate interface, which can be associated with the variations of piezoelectric properties.
Resumo:
The tegumental allergen-like (TAL) proteins from Schistosoma mansoni are part of a family of calcium binding proteins found only in parasitic flatworms. These proteins have attracted interest as potential drug or vaccine targets, yet comparatively little is known about their biochemistry. Here, we compared the biochemical properties of three members of this family: SmTAL1 (Sm22.6), SmTAL2 (Sm21.7) and SmTAL3 (Sm20.8). Molecular modelling suggested that, despite similarities in domain organisation, there are differences in the three proteins’ structures. SmTAL1 was predicted to have two functional calcium binding sites and SmTAL2 was predicted to have one. Despite the presence of two EF-hand-like structures in SmTAL3, neither was predicted to be functional. These predictions were confirmed by native gel electrophoresis, intrinsic fluorescence and differential scanning fluorimetry: both SmTAL1 and SmTAL2 are able to bind calcium ions reversibly, but SmTAL3 is not. SmTAL1 is also able to interact with manganese, strontium, iron(II) and nickel ions. SmTAL2 has a different ion binding profile interacting with cadmium, manganese, magnesium, strontium and barium ions in addition to calcium. All three proteins form dimers and, in contrast to some Fasciola hepatica proteins from the same family; dimerization is not affected by calcium ions. SmTAL1 interacts with the anti-schistosomal drug praziquantel and the calmodulin antagonists trifluoperazine, chlorpromazine and W7. SmTAL2 interacts only with W7. SmTAL3 interacts with the aforementioned calmodulin antagonists and thiamylal, but not praziquantel. Overall, these data suggest that the proteins have different biochemical properties and thus, most likely, different in vivo functions.
Resumo:
Carbon dioxide was reduced photocatalytically using aqueous CdS or ZnS colloids containing tetramethylammonium chloride to give the dimeric and tetrameric products namely, oxalate, glyoxylate, glycolate and tartrate. A model is presented to explain the role of the tetramethylammonium ions. Studies were also performed using ZnO, SiC, BaTiO3 and Sr TiO3, which in the absence of tetramethylammonium ions produced formate and formaldehyde. The relative quantum efficiencies of the six semiconductors were related to their band gaps and conduction band potentials. The role and effectiveness of several 'hole acceptor' (electron donor) compounds in this process is shown to be related to their redox potentials.
Resumo:
The ability to directly utilize hydrocarbons and other renewable liquid fuels is one of the most important issues affecting the large scale deployment of solid oxide fuel cells (SOFCs). Herein we designed La0.2Sr0.7TiO3-Ni/YSZ functional gradient anode (FGA) supported SOFCs, prepared with a co-tape casting method and sintered using the field assisted sintering technique (FAST). Through SEM observations, it was confirmed that the FGA structure was achieved and well maintained after the FAST process. Distortion and delamination which usually results after conventional sintering was successfully avoided. The La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs showed a maximum power density of 600mWcm-2 at 750°C, and was stable for 70h in CH4. No carbon deposition was detected using Raman spectroscopy. These results confirm the potential coke resistance of La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs.
Wireless electrochemical modification of catalytic activity on a mixed protonic-electronic conductor
Resumo:
A novel approach to electrochemical modification of catalytic activity using a wireless configuration has been undertaken. This paper presents preliminary results on the modification of a platinum catalyst film supported on a pellet of Sr0.97Ce0.9Yb0.1O3-δ (SCYb), considered to be a mixed protonic-electronic conductor under reducing conditions. The wireless configuration utilises the mixed ionic and electronic conductivity of the supporting membrane to supply an ionic promoting species to the catalyst surface. Control of the flux of this species is achieved by adjusting the effective hydrogen chemical potential difference across the membrane in a dual-chamber reactor with one chamber acting as the "reaction side" and the other as the "sweep side". The reaction rate can be promoted by up to a factor of 1.6, for temperatures around 500 °C and low reactant concentrations, when hydrogen is introduced on the sweep side of the membrane reactor. The use of helium, moist helium and oxygen in helium as sweep gases did not modify the reaction rate. © 2007 Elsevier B.V. All rights reserved.