895 resultados para strong convergence
Resumo:
Adsorption isotherms for the removal of linoleic acid from aqueous ethanol were measured using a strong anion exchange resin (Amberlyst A26 OH). The data for linoleic acid were compared with previously published results for oleic acid. The equilibrium data were correlated using the Langmuir and Freundlich isotherms. Lower average deviations between experimental and calculated results were obtained with the Langmuir model. The capacity of the resin for adsorbing linoleic acid was evaluated at different water contents in ethanol, 100 w = 0.50 to 15.27, and at 298.15 K. The water content in ethanol does not influence significantly the equilibrium behavior, and the strong anion exchange resin has a good performance in the removal of linoleic acid from the liquid phase.
Resumo:
The impact of the inter-El Nio (EN) variability on the moisture availability over Southeastern South America (SESA) is investigated. Also, an automatic tracking scheme was used to analyze the extratropical cyclones properties (system density - SD and central pressure - CP) in this region. During the austral summer period from 1977-2000, the differences for the upper-level wave train anomaly composites seem to determine the rainfall composite differences. In fact, the positive rainfall anomalies over most of the SESA domain during the strong EN events are explained by an upper-level cyclonic center over the tropics and an anticyclonic center over the eastern subtropical area. This pattern seems to contribute to upward vertical motion at 500 hPa and reinforcement of the meridional moisture transport from the equatorial Atlantic Ocean and western Amazon basin to the SESA region. These features may contribute to the positive SD and negative CP anomalies explaining part of the positive rainfall anomalies found there. On the other hand, negative rainfall anomalies are located in the northern part of SESA for the weak EN years when compared to those for the strong events. Also, positive anomalies are found in the southern part, albeit less intense. It was associated with the weakening of the meridional moisture transport from the tropics to the SESA that seems have to contributed with smaller SD and CP anomalies over the most part of subtropics, when compared to the strong EN years.
Resumo:
This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of Sao Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of Sao Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society
Resumo:
The three poikilophydric and homoiochlorophyllous moss species Campylopus savannarum (C. Muell.) Mitt., Racocarpus fontinaloides (C. Muell.) Par. and Ptychomitrium vaginatum Besch. grow on sun-exposed rocks of a tropical inselberg in Brazil subject to regular drying and wetting cycles. Effective photo-oxidative protection in the light-adapted desiccated state in all three species is achieved by a reduction of ground chlorophyll fluorescence, F, to almost zero. Upon rewatering, the kinetics of the recovery of F in air dry cushions to higher values is very fast in the first 5min, but more than 80min are needed until an equilibrium is reached gradually. The kinetics were not different between the three species. The three moss species, have a distinct niche occupation and form a characteristic zonation around soil vegetation islands on the rock outcrops, where C. savannarum and R. fontinaloides form an inner and outer belt, respectively, around vegetation islands and P vaginatum occurs as small isolated cushions on bare rock. However, they were not distinguished by the reduction of F in the dry state and the rewetting recovery kinetics and only slightly different in their photosynthetic capacity. Stable isotope ratios (delta C-13, delta N-15) indicate that liquid films of water limiting diffusion of CO2 are important in determining carbon acquisition and suggest that limitation of CO2 fixation by water films must be more pronounced over time in P vaginatum than in the latter species. This is determined by both the micro site occupied and the form of the moss cushions. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Mice selected for a strong (AIRmax) or weak (AIRmin) acute inflammatory response present different susceptibilities to bacterial infections, autoimmune diseases and carcinogenesis. Variations in these phenotypes have been also detected in AIRmax and AIRmin mice rendered homozygous for Slc11a1 resistant (R) and susceptible (S) alleles. Our aim was to investigate if the phenotypic differences observed in these mice was related to the complement system. AIRmax and AIRmin mice and AIRmax and AIRmin groups homozygous for the resistance (R) or susceptibility (S) alleles of the solute carrier family 11a1 member (Slc11a1) gene, formerly designated Nramp-1. While no difference in complement activity was detected in sera from AIRmax and AIRmin strains, all sera from AIRmax Slc11a1 resistant mice (AIRmax(RR)) presented no complement-dependent hemolytic activity. Furthermore, C5 was not found in their sera by immunodiffusion and, polymerase chain reaction and DNA sequencing of its gene demonstrated that AIRmax(RR) mice are homozygous for the C5 deficient (D) mutation previously described in A/J. Therefore, the C5D allele was fixed in homozygosis in AIRmax(RR) line. The AIRmax(RR) line is a new experimental mouse model in which a strong inflammatory response can be triggered in vivo in the absence of C5.
Resumo:
Given a model 2-complex K(P) of a group presentation P, we associate to it an integer matrix Delta(P) and we prove that a cellular map f : K(P) -> S(2) is root free (is not strongly surjective) if and only if the diophantine linear system Delta(P) Y = (deg) over right arrow (f) has an integer solution, here (deg) over right arrow (f) is the so-called vector-degree of f
Resumo:
Increasing efforts exist in integrating different levels of detail in models of the cardiovascular system. For instance, one-dimensional representations are employed to model the systemic circulation. In this context, effective and black-box-type decomposition strategies for one-dimensional networks are needed, so as to: (i) employ domain decomposition strategies for large systemic models (1D-1D coupling) and (ii) provide the conceptual basis for dimensionally-heterogeneous representations (1D-3D coupling, among various possibilities). The strategy proposed in this article works for both of these two scenarios, though the several applications shown to illustrate its performance focus on the 1D-1D coupling case. A one-dimensional network is decomposed in such a way that each coupling point connects two (and not more) of the sub-networks. At each of the M connection points two unknowns are defined: the flow rate and pressure. These 2M unknowns are determined by 2M equations, since each sub-network provides one (non-linear) equation per coupling point. It is shown how to build the 2M x 2M non-linear system with arbitrary and independent choice of boundary conditions for each of the sub-networks. The idea is then to solve this non-linear system until convergence, which guarantees strong coupling of the complete network. In other words, if the non-linear solver converges at each time step, the solution coincides with what would be obtained by monolithically modeling the whole network. The decomposition thus imposes no stability restriction on the choice of the time step size. Effective iterative strategies for the non-linear system that preserve the black-box character of the decomposition are then explored. Several variants of matrix-free Broyden`s and Newton-GMRES algorithms are assessed as numerical solvers by comparing their performance on sub-critical wave propagation problems which range from academic test cases to realistic cardiovascular applications. A specific variant of Broyden`s algorithm is identified and recommended on the basis of its computer cost and reliability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this article we address decomposition strategies especially tailored to perform strong coupling of dimensionally heterogeneous models, under the hypothesis that one wants to solve each submodel separately and implement the interaction between subdomains by boundary conditions alone. The novel methodology takes full advantage of the small number of interface unknowns in this kind of problems. Existing algorithms can be viewed as variants of the `natural` staggered algorithm in which each domain transfers function values to the other, and receives fluxes (or forces), and vice versa. This natural algorithm is known as Dirichlet-to-Neumann in the Domain Decomposition literature. Essentially, we propose a framework in which this algorithm is equivalent to applying Gauss-Seidel iterations to a suitably defined (linear or nonlinear) system of equations. It is then immediate to switch to other iterative solvers such as GMRES or other Krylov-based method. which we assess through numerical experiments showing the significant gain that can be achieved. indeed. the benefit is that an extremely flexible, automatic coupling strategy can be developed, which in addition leads to iterative procedures that are parameter-free and rapidly converging. Further, in linear problems they have the finite termination property. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
A finite difference technique, based on a projection method, is developed for solving the dynamic three-dimensional Ericksen-Leslie equations for nematic liquid crystals subject to a strong magnetic field. The governing equations in this situation are derived using primitive variables and are solved using the ideas behind the GENSMAC methodology (Tome and McKee [32]; Tome et al. [34]). The resulting numerical technique is then validated by comparing the numerical solution against an analytic solution for steady three-dimensional flow between two-parallel plates subject to a strong magnetic field. The validated code is then employed to solve channel flow for which there is no analytic solution. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Themean value of the one-loop energy-momentum tensor in thermal QED with an electric-like background that creates particles from vacuum is calculated. The problem is essentially different from calculations of effective actions ( similar to the action of Heisenberg-Euler) in backgrounds that respect the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and the duration over which one can neglect the back-reaction of created particles are established.
Resumo:
We found quasinormal modes, both in time and frequency domains, of the Ernst black holes, that is neutral black holes immersed in an external magnetic field. The Ernst solution reduces to the Schwarzschild solution, when the magnetic field vanishes. It is found that the quasinormal spectrum for massless scalar field in the vicinity of the magnetized black holes acquires an effective ""mass"" mu = 2B vertical bar m vertical bar, where m is the azimuthal number and B is parameter describing the magnetic field. We shall show that in the presence of a magnetic field quasinormal modes are longer lived and have larger oscillation frequencies. The perturbations of higher-dimensional magnetized black holes by Ortaggio and of magnetized dilaton black holes by Radu are considered. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Optimization methods that employ the classical Powell-Hestenes-Rockafellar augmented Lagrangian are useful tools for solving nonlinear programming problems. Their reputation decreased in the last 10 years due to the comparative success of interior-point Newtonian algorithms, which are asymptotically faster. In this research, a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its `pure` counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the interior-point method is replaced by the Newtonian resolution of a Karush-Kuhn-Tucker (KKT) system identified by the augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:http://www.ime.usp.br/similar to egbirgin/tango/.
Resumo:
We introduce jump processes in R(k), called density-profile processes, to model biological signaling networks. Our modeling setup describes the macroscopic evolution of a finite-size spin-flip model with k types of spins with arbitrary number of internal states interacting through a non-reversible stochastic dynamics. We are mostly interested on the multi-dimensional empirical-magnetization vector in the thermodynamic limit, and prove that, within arbitrary finite time-intervals, its path converges almost surely to a deterministic trajectory determined by a first-order (non-linear) differential equation with explicit bounds on the distance between the stochastic and deterministic trajectories. As parameters of the spin-flip dynamics change, the associated dynamical system may go through bifurcations, associated to phase transitions in the statistical mechanical setting. We present a simple example of spin-flip stochastic model, associated to a synthetic biology model known as repressilator, which leads to a dynamical system with Hopf and pitchfork bifurcations. Depending on the parameter values, the magnetization random path can either converge to a unique stable fixed point, converge to one of a pair of stable fixed points, or asymptotically evolve close to a deterministic orbit in Rk. We also discuss a simple signaling pathway related to cancer research, called p53 module.
Resumo:
Many factors can affect the quality of diesel oil, in particular the degradation processes that are directly related to some organosulfur compounds. During the degradation process, these compounds are oxidized into their corresponding sulfonic acids, generating a strong acid content during the process. p-Toluene sulfonic acid analysis was performed using the linear sweep voltammetry technique with a platinum ultramicroelectrode in aqueous solution containing 3 mol L(-1) potassium chloride. An extraction step was introduced prior to the voltammetric detection in order to avoid the adsorption of organic molecules, which inhibit the electrochemical response. The extraction step promoted the transference of sulfonic acid from the diesel oil to an aqueous phase. The method was accurate and reproducible, with detection and quantification limits of 5 ppm and 15 ppm, respectively. Recovery of sulfonic acid was around 90%.